Adversarial training is widely acknowledged as the most effective defense against adversarial attacks. However, it is also well established that achieving both robustness and generalization in adversarially trained models involves a trade-off. The goal of this work is to provide an in depth comparison of different approaches for adversarial training in language models. Specifically, we study the effect of pre-training data augmentation as well as training time input perturbations vs. embedding space perturbations on the robustness and generalization of BERT-like language models. Our findings suggest that better robustness can be achieved by pre-training data augmentation or by training with input space perturbation. However, training with embedding space perturbation significantly improves generalization. A linguistic correlation analysis of neurons of the learned models reveal that the improved generalization is due to `more specialized' neurons. To the best of our knowledge, this is the first work to carry out a deep qualitative analysis of different methods of generating adversarial examples in adversarial training of language models.
translated by 谷歌翻译
Robustness evaluation against adversarial examples has become increasingly important to unveil the trustworthiness of the prevailing deep models in natural language processing (NLP). However, in contrast to the computer vision domain where the first-order projected gradient descent (PGD) is used as the benchmark approach to generate adversarial examples for robustness evaluation, there lacks a principled first-order gradient-based robustness evaluation framework in NLP. The emerging optimization challenges lie in 1) the discrete nature of textual inputs together with the strong coupling between the perturbation location and the actual content, and 2) the additional constraint that the perturbed text should be fluent and achieve a low perplexity under a language model. These challenges make the development of PGD-like NLP attacks difficult. To bridge the gap, we propose TextGrad, a new attack generator using gradient-driven optimization, supporting high-accuracy and high-quality assessment of adversarial robustness in NLP. Specifically, we address the aforementioned challenges in a unified optimization framework. And we develop an effective convex relaxation method to co-optimize the continuously-relaxed site selection and perturbation variables and leverage an effective sampling method to establish an accurate mapping from the continuous optimization variables to the discrete textual perturbations. Moreover, as a first-order attack generation method, TextGrad can be baked into adversarial training to further improve the robustness of NLP models. Extensive experiments are provided to demonstrate the effectiveness of TextGrad not only in attack generation for robustness evaluation but also in adversarial defense.
translated by 谷歌翻译
Adversarial training has been empirically shown to be more prone to overfitting than standard training. The exact underlying reasons still need to be fully understood. In this paper, we identify one cause of overfitting related to current practices of generating adversarial samples from misclassified samples. To address this, we propose an alternative approach that leverages the misclassified samples to mitigate the overfitting problem. We show that our approach achieves better generalization while having comparable robustness to state-of-the-art adversarial training methods on a wide range of computer vision, natural language processing, and tabular tasks.
translated by 谷歌翻译
最近的作品表明了解释性和鲁棒性是值得信赖和可靠的文本分类的两个关键成分。然而,以前的作品通常是解决了两个方面的一个:i)如何提取准确的理由,以便在有利于预测的同时解释; ii)如何使预测模型对不同类型的对抗性攻击稳健。直观地,一种产生有用的解释的模型应该对对抗性攻击更加强大,因为我们无法信任输出解释的模型,而是在小扰动下改变其预测。为此,我们提出了一个名为-BMC的联合分类和理由提取模型。它包括两个关键机制:混合的对手训练(AT)旨在在离散和嵌入空间中使用各种扰动,以改善模型的鲁棒性,边界匹配约束(BMC)有助于利用边界信息的引导来定位理由。基准数据集的性能表明,所提出的AT-BMC优于分类和基本原子的基础,由大边距提取。鲁棒性分析表明,建议的AT-BMC将攻击成功率降低了高达69%。经验结果表明,强大的模型与更好的解释之间存在连接。
translated by 谷歌翻译
尽管在许多机器学习任务方面取得了巨大成功,但深度神经网络仍然易于对抗对抗样本。虽然基于梯度的对抗攻击方法在计算机视野领域探索,但由于文本的离散性质,直接应用于自然语言处理中,这是不切实际的。为了弥合这一差距,我们提出了一般框架,以适应现有的基于梯度的方法来制作文本对抗性样本。在该框架中,将基于梯度的连续扰动添加到嵌入层中,并在前向传播过程中被放大。然后用掩模语言模型头解码最终的扰动潜在表示以获得潜在的对抗性样本。在本文中,我们将我们的框架与\ textbf {t} Extual \ TextBF {P} ROJECTED \ TextBF {G} Radient \ TextBF {D} excent(\ TextBF {TPGD})进行ronject \ textbf {p}。我们通过在三个基准数据集上执行转移黑匣子攻击来评估我们的框架来评估我们的框架。实验结果表明,与强基线方法相比,我们的方法达到了更好的性能,并产生更精细和语法的对抗性样本。所有代码和数据都将公开。
translated by 谷歌翻译
数据增强是通过转换为机器学习的人工创建数据的人工创建,是一个跨机器学习学科的研究领域。尽管它对于增加模型的概括功能很有用,但它还可以解决许多其他挑战和问题,从克服有限的培训数据到正规化目标到限制用于保护隐私的数据的数量。基于对数据扩展的目标和应用的精确描述以及现有作品的分类法,该调查涉及用于文本分类的数据增强方法,并旨在为研究人员和从业者提供简洁而全面的概述。我们将100多种方法划分为12种不同的分组,并提供最先进的参考文献来阐述哪种方法可以通过将它们相互关联,从而阐述了哪种方法。最后,提供可能构成未来工作的基础的研究观点。
translated by 谷歌翻译
离散对手攻击是对保留输出标签的语言输入的象征性扰动,但导致预测误差。虽然这种攻击已经广泛探索了评估模型稳健性的目的,但他们的改善稳健性的效用仅限于离线增强。具体地,给定训练有素的模型,攻击用于产生扰动(对抗性)示例,并且模型重新培训一次。在这项工作中,我们解决了这个差距并利用了在线增强的离散攻击,在每个训练步骤中产生了对抗的例子,适应模型的变化性质。我们提出(i)基于最佳搜索的新的离散攻击,以及(ii)与现有工作不同的随机采样攻击不是基于昂贵的搜索过程。令人惊讶的是,我们发现随机抽样导致鲁棒性的令人印象深刻,优于普通使用的离线增强,同时导致训练时间〜10x的加速。此外,在线增强基于搜索的攻击证明了更高的培训成本,显着提高了三个数据集的鲁棒性。最后,我们表明我们的新攻击与先前的方法相比,我们的新攻击显着提高了鲁棒性。
translated by 谷歌翻译
关于NLP模型的最先进攻击缺乏对成功攻击的共享定义。我们将思考从过去的工作蒸馏成统一的框架:一个成功的自然语言对抗性示例是欺骗模型并遵循一些语言限制的扰动。然后,我们分析了两个最先进的同义词替换攻击的产出。我们发现他们的扰动通常不会保留语义,38%引入语法错误。人类调查显示,为了成功保留语义,我们需要大大增加交换词语的嵌入和原始和扰动句子的句子编码之间的最小余弦相似之处。与更好的保留语义和语法性,攻击成功率下降超过70个百分点。
translated by 谷歌翻译
最近的自然语言处理(NLP)技术在基准数据集中实现了高性能,主要原因是由于深度学习性能的显着改善。研究界的进步导致了最先进的NLP任务的生产系统的巨大增强,例如虚拟助理,语音识别和情感分析。然而,随着对抗性攻击测试时,这种NLP系统仍然仍然失败。初始缺乏稳健性暴露于当前模型的语言理解能力中的令人不安的差距,当NLP系统部署在现实生活中时,会产生问题。在本文中,我们通过以各种维度的系统方式概述文献来展示了NLP稳健性研究的结构化概述。然后,我们深入了解稳健性的各种维度,跨技术,指标,嵌入和基准。最后,我们认为,鲁棒性应该是多维的,提供对当前研究的见解,确定文学中的差距,以建议值得追求这些差距的方向。
translated by 谷歌翻译
Recent works on Lottery Ticket Hypothesis have shown that pre-trained language models (PLMs) contain smaller matching subnetworks(winning tickets) which are capable of reaching accuracy comparable to the original models. However, these tickets are proved to be notrobust to adversarial examples, and even worse than their PLM counterparts. To address this problem, we propose a novel method based on learning binary weight masks to identify robust tickets hidden in the original PLMs. Since the loss is not differentiable for the binary mask, we assign the hard concrete distribution to the masks and encourage their sparsity using a smoothing approximation of L0 regularization.Furthermore, we design an adversarial loss objective to guide the search for robust tickets and ensure that the tickets perform well bothin accuracy and robustness. Experimental results show the significant improvement of the proposed method over previous work on adversarial robustness evaluation.
translated by 谷歌翻译
我们将自然语言处理模型的脆弱性归因于以下事实:类似的输入转换为嵌入空间中不同的表示形式,导致输出不一致,我们提出了一种新颖的强大训练方法,称为快速三胞胎度量度量学习(FTML)。具体而言,我们认为原始样本应具有相似的表示及其对手对应物,并将其代表与其他样品区分开,以提高鲁棒性。为此,我们将三胞胎度量学习采用标准培训中,以将单词更接近其正样本(即同义词),并在嵌入空间中推出其负面样本(即非综合样品)。广泛的实验表明,FTML可以显着促进模型的鲁棒性,以针对各种高级对抗攻击,同时保持对原始样品的竞争性分类精度。此外,我们的方法是有效的,因为它只需要调整嵌入方式,并且在标准培训上引入了很少的开销。我们的工作显示出通过稳健的单词嵌入来改善文本鲁棒性的巨大潜力。
translated by 谷歌翻译
NLP系统的Black-Box对抗攻击中最近的工作引起了很多关注。先前的黑框攻击假设攻击者可以根据选定的输入观察目标模型的输出标签。在这项工作中,受到对抗性转移性的启发,我们提出了一种新型的黑盒NLP对抗性攻击,攻击者可以选择相似的域并将对抗性示例转移到目标域并在目标模型中导致性能差。基于领域的适应理论,我们提出了一种称为Learn2Weight的防御策略,该策略训练以预测目标模型的重量调整,以防止对类似的对抗性示例的攻击。使用亚马逊多域情绪分类数据集,我们从经验上表明,与标准的黑盒防御方法(例如对抗性训练和防御性蒸馏)相比,Learn2Weight对攻击有效。这项工作有助于越来越多的有关机器学习安全的文献。
translated by 谷歌翻译
Machine learning algorithms are often vulnerable to adversarial examples that have imperceptible alterations from the original counterparts but can fool the state-of-the-art models. It is helpful to evaluate or even improve the robustness of these models by exposing the maliciously crafted adversarial examples. In this paper, we present TEXTFOOLER, a simple but strong baseline to generate adversarial text. By applying it to two fundamental natural language tasks, text classification and textual entailment, we successfully attacked three target models, including the powerful pre-trained BERT, and the widely used convolutional and recurrent neural networks. We demonstrate three advantages of this framework:(1) effective-it outperforms previous attacks by success rate and perturbation rate, (2) utility-preserving-it preserves semantic content, grammaticality, and correct types classified by humans, and (3) efficient-it generates adversarial text with computational complexity linear to the text length. 1
translated by 谷歌翻译
基于预先训练的语言模型(PRLMS)在源代码理解任务中取得的巨大成功,当前的文献研究要么进一步改善PRLM的性能(概括)或对对抗性攻击的鲁棒性。但是,他们必须在这两个方面之间的权衡方面妥协,而且它们都没有考虑以有效和实用的方式改善双方。为了填补这一空白,我们建议使用语义保护对抗代码嵌入(空间),以找到最坏的传播语义保留攻击,同时迫使模型在这些最坏情况下预测正确的标签。实验和分析表明,在提高PRLMS代码的性能的同时,空间可以保持强大的防御性攻击。
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
对抗性的鲁棒性已经成为深度学习的核心目标,无论是在理论和实践中。然而,成功的方法来改善对抗的鲁棒性(如逆势训练)在不受干扰的数据上大大伤害了泛化性能。这可能会对对抗性鲁棒性如何影响现实世界系统的影响(即,如果它可以提高未受干扰的数据的准确性),许多人可能选择放弃鲁棒性)。我们提出内插对抗培训,该培训最近雇用了在对抗培训框架内基于插值的基于插值的培训方法。在CiFar -10上,对抗性训练增加了标准测试错误(当没有对手时)从4.43%到12.32%,而我们的内插对抗培训我们保留了对抗性的鲁棒性,同时实现了仅6.45%的标准测试误差。通过我们的技术,强大模型标准误差的相对增加从178.1%降至仅为45.5%。此外,我们提供内插对抗性培训的数学分析,以确认其效率,并在鲁棒性和泛化方面展示其优势。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
深度神经网络(DNNS)最近在许多分类任务中取得了巨大的成功。不幸的是,它们容易受到对抗性攻击的影响,这些攻击会产生对抗性示例,这些示例具有很小的扰动,以欺骗DNN模型,尤其是在模型共享方案中。事实证明,对抗性训练是最有效的策略,它将对抗性示例注入模型训练中,以提高DNN模型的稳健性,以对对抗性攻击。但是,基于现有的对抗性示例的对抗训练无法很好地推广到标准,不受干扰的测试数据。为了在标准准确性和对抗性鲁棒性之间取得更好的权衡,我们提出了一个新型的对抗训练框架,称为潜在边界引导的对抗训练(梯子),该训练(梯子)在潜在的边界引导的对抗性示例上对对手进行对手训练DNN模型。与大多数在输入空间中生成对抗示例的现有方法相反,梯子通过增加对潜在特征的扰动而产生了无数的高质量对抗示例。扰动是沿SVM构建的具有注意机制的决策边界的正常情况进行的。我们从边界场的角度和可视化视图分析了生成的边界引导的对抗示例的优点。与Vanilla DNN和竞争性底线相比,对MNIST,SVHN,CELEBA和CIFAR-10的广泛实验和详细分析验证了梯子在标准准确性和对抗性鲁棒性之间取得更好的权衡方面的有效性。
translated by 谷歌翻译
自我监督的学习方法,如对比学习,在自然语言处理中非常重视。它使用对培训数据增强对具有良好表示能力的编码器构建分类任务。然而,在对比学习的学习成对的构建在NLP任务中更难。以前的作品生成单词级更改以形成对,但小变换可能会导致句子含义的显着变化作为自然语言的离散和稀疏性质。在本文中,对对抗的训练在NLP的嵌入空间中产生了挑战性和更难的学习对抗性示例作为学习对。使用对比学学习提高了对抗性培训的泛化能力,因为对比损失可以使样品分布均匀。同时,对抗性培训也提高了对比学习的稳健性。提出了两种小说框架,监督对比对抗学习(SCAS)和无监督的SCAS(USCAL),通过利用对比学习的对抗性培训来产生学习成对。利用基于标签的监督任务丢失,以产生对抗性示例,而无监督的任务会带来对比损失。为了验证所提出的框架的有效性,我们将其雇用到基于变换器的模型,用于自然语言理解,句子语义文本相似性和对抗学习任务。胶水基准任务的实验结果表明,我们的微调监督方法优于BERT $ _ {基础} $超过1.75 \%。我们还评估我们对语义文本相似性(STS)任务的无监督方法,并且我们的方法获得77.29 \%with bert $ _ {base} $。我们方法的稳健性在NLI任务的多个对抗性数据集下进行最先进的结果。
translated by 谷歌翻译
在过去的几年中,保护NLP模型免受拼写错误的障碍是研究兴趣的对象。现有的补救措施通常会损害准确性,或者需要对每个新的攻击类别进行完整的模型重新训练。我们提出了一种新颖的方法,可以向基于变压器的NLP模型中的拼写错误增加弹性。可以实现这种鲁棒性,而无需重新训练原始的NLP模型,并且只有最小的语言丧失理解在没有拼写错误的输入上的性能。此外,我们提出了一种新的有效近似方法来产生对抗性拼写错误,这大大降低了评估模型对对抗性攻击的弹性所需的成本。
translated by 谷歌翻译