Adversarial training has been empirically shown to be more prone to overfitting than standard training. The exact underlying reasons still need to be fully understood. In this paper, we identify one cause of overfitting related to current practices of generating adversarial samples from misclassified samples. To address this, we propose an alternative approach that leverages the misclassified samples to mitigate the overfitting problem. We show that our approach achieves better generalization while having comparable robustness to state-of-the-art adversarial training methods on a wide range of computer vision, natural language processing, and tabular tasks.
translated by 谷歌翻译
作为反对攻击的最有效的防御方法之一,对抗性训练倾向于学习包容性的决策边界,以提高深度学习模型的鲁棒性。但是,由于沿对抗方向的边缘的大幅度和不必要的增加,对抗性训练会在自然实例和对抗性示例之间引起严重的交叉,这不利于平衡稳健性和自然准确性之间的权衡。在本文中,我们提出了一种新颖的对抗训练计划,以在稳健性和自然准确性之间进行更好的权衡。它旨在学习一个中度包容的决策边界,这意味着决策边界下的自然示例的边缘是中等的。我们称此方案为中等边缘的对抗训练(MMAT),该方案生成更细粒度的对抗示例以减轻交叉问题。我们还利用了经过良好培训的教师模型的逻辑来指导我们的模型学习。最后,MMAT在Black-Box和White-Box攻击下都可以实现高自然的精度和鲁棒性。例如,在SVHN上,实现了最新的鲁棒性和自然精度。
translated by 谷歌翻译
成本敏感的分类对于错误分类错误的成本差异很大,至关重要。但是,过度参数化对深神经网络(DNNS)的成本敏感建模构成了基本挑战。 DNN完全插值训练数据集的能力可以渲染DNN,纯粹在训练集上进行评估,无效地区分了成本敏感的解决方案和其总体准确性最大化。这需要重新思考DNN中的成本敏感分类。为了应对这一挑战,本文提出了一个具有成本敏感的对抗数据增强(CSADA)框架,以使过度参数化的模型成本敏感。总体想法是生成针对性的对抗示例,以推动成本感知方向的决策边界。这些有针对性的对抗样本是通过最大化关键分类错误的可能性而产生的,并用于训练一个模型,以更加保守的对成对的决策。公开可用的有关著名数据集和药物药物图像(PMI)数据集的实验表明,我们的方法可以有效地最大程度地减少整体成本并减少关键错误,同时在整体准确性方面达到可比的性能。
translated by 谷歌翻译
Adversarial training based on the minimax formulation is necessary for obtaining adversarial robustness of trained models. However, it is conservative or even pessimistic so that it sometimes hurts the natural generalization. In this paper, we raise a fundamental question-do we have to trade off natural generalization for adversarial robustness? We argue that adversarial training is to employ confident adversarial data for updating the current model. We propose a novel formulation of friendly adversarial training (FAT): rather than employing most adversarial data maximizing the loss, we search for least adversarial data (i.e., friendly adversarial data) minimizing the loss, among the adversarial data that are confidently misclassified. Our novel formulation is easy to implement by just stopping the most adversarial data searching algorithms such as PGD (projected gradient descent) early, which we call early-stopped PGD. Theoretically, FAT is justified by an upper bound of the adversarial risk. Empirically, early-stopped PGD allows us to answer the earlier question negatively-adversarial robustness can indeed be achieved without compromising the natural generalization.* Equal contribution † Preliminary work was done during an internship at RIKEN AIP.
translated by 谷歌翻译
Adversarial training is widely acknowledged as the most effective defense against adversarial attacks. However, it is also well established that achieving both robustness and generalization in adversarially trained models involves a trade-off. The goal of this work is to provide an in depth comparison of different approaches for adversarial training in language models. Specifically, we study the effect of pre-training data augmentation as well as training time input perturbations vs. embedding space perturbations on the robustness and generalization of BERT-like language models. Our findings suggest that better robustness can be achieved by pre-training data augmentation or by training with input space perturbation. However, training with embedding space perturbation significantly improves generalization. A linguistic correlation analysis of neurons of the learned models reveal that the improved generalization is due to `more specialized' neurons. To the best of our knowledge, this is the first work to carry out a deep qualitative analysis of different methods of generating adversarial examples in adversarial training of language models.
translated by 谷歌翻译
对抗训练(AT)在防御对抗例子方面表现出色。最近的研究表明,示例对于AT期间模型的最终鲁棒性并不同样重要,即,所谓的硬示例可以攻击容易表现出比对最终鲁棒性的鲁棒示例更大的影响。因此,保证硬示例的鲁棒性对于改善模型的最终鲁棒性至关重要。但是,定义有效的启发式方法来寻找辛苦示例仍然很困难。在本文中,受到信息瓶颈(IB)原则的启发,我们发现了一个具有高度共同信息及其相关的潜在表示的例子,更有可能受到攻击。基于此观察,我们提出了一种新颖有效的对抗训练方法(Infoat)。鼓励Infoat找到具有高相互信息的示例,并有效利用它们以提高模型的最终鲁棒性。实验结果表明,与几种最先进的方法相比,Infoat在不同数据集和模型之间达到了最佳的鲁棒性。
translated by 谷歌翻译
到目前为止对抗训练是抵御对抗例子的最有效的策略。然而,由于每个训练步骤中的迭代对抗性攻击,它遭受了高的计算成本。最近的研究表明,通过随机初始化执行单步攻击,可以实现快速的对抗训练。然而,这种方法仍然落后于稳定性和模型稳健性的最先进的对手训练算法。在这项工作中,我们通过观察随机平滑的随机初始化来更好地优化内部最大化问题,对快速对抗培训进行新的理解。在这种新的视角之后,我们还提出了一种新的初始化策略,向后平滑,进一步提高单步强大培训方法的稳定性和模型稳健性。多个基准测试的实验表明,我们的方法在使用更少的训练时间(使用相同的培训计划时,使用更少的培训时间($ \ sim $ 3x改进)时,我们的方法达到了类似的模型稳健性。
translated by 谷歌翻译
尽管机器学习系统的效率和可扩展性,但最近的研究表明,许多分类方法,尤其是深神经网络(DNN),易受对抗的例子;即,仔细制作欺骗训练有素的分类模型的例子,同时无法区分从自然数据到人类。这使得在安全关键区域中应用DNN或相关方法可能不安全。由于这个问题是由Biggio等人确定的。 (2013)和Szegedy等人。(2014年),在这一领域已经完成了很多工作,包括开发攻击方法,以产生对抗的例子和防御技术的构建防范这些例子。本文旨在向统计界介绍这一主题及其最新发展,主要关注对抗性示例的产生和保护。在数值实验中使用的计算代码(在Python和R)公开可用于读者探讨调查的方法。本文希望提交人们将鼓励更多统计学人员在这种重要的令人兴奋的领域的产生和捍卫对抗的例子。
translated by 谷歌翻译
在本讨论文件中,我们调查了有关机器学习模型鲁棒性的最新研究。随着学习算法在数据驱动的控制系统中越来越流行,必须确保它们对数据不确定性的稳健性,以维持可靠的安全至关重要的操作。我们首先回顾了这种鲁棒性的共同形式主义,然后继续讨论训练健壮的机器学习模型的流行和最新技术,以及可证明这种鲁棒性的方法。从强大的机器学习的这种统一中,我们识别并讨论了该地区未来研究的迫切方向。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
对抗性例子的现象说明了深神经网络最基本的漏洞之一。在推出这一固有的弱点的各种技术中,对抗性训练已成为学习健壮模型的最有效策略。通常,这是通过平衡强大和自然目标来实现的。在这项工作中,我们旨在通过执行域不变的功能表示,进一步优化鲁棒和标准准确性之间的权衡。我们提出了一种新的对抗训练方法,域不变的对手学习(DIAL),该方法学习了一个既健壮又不变的功能表示形式。拨盘使用自然域及其相应的对抗域上的域对抗神经网络(DANN)的变体。在源域由自然示例组成和目标域组成的情况下,是对抗性扰动的示例,我们的方法学习了一个被限制的特征表示,以免区分自然和对抗性示例,因此可以实现更强大的表示。拨盘是一种通用和模块化技术,可以轻松地将其纳入任何对抗训练方法中。我们的实验表明,将拨号纳入对抗训练过程中可以提高鲁棒性和标准精度。
translated by 谷歌翻译
对抗训练(AT)方法有效地防止对抗性攻击,但它们在不同阶级之间引入了严重的准确性和鲁棒性差异,称为强大的公平性问题。以前建议的公平健壮的学习(FRL)适应重新重量不同的类别以提高公平性。但是,表现良好的班级的表现降低了,导致表现强劲。在本文中,我们在对抗训练中观察到了两种不公平现象:在产生每个类别的对抗性示例(源级公平)和产生对抗性示例时(目标级公平)时产生对抗性示例的不​​同困难。从观察结果中,我们提出平衡对抗训练(BAT)来解决强大的公平问题。关于源阶级的公平性,我们调整了每个班级的攻击强度和困难,以在决策边界附近生成样本,以便更容易,更公平的模型学习;考虑到目标级公平,通过引入统一的分布约束,我们鼓励每个班级的对抗性示例生成过程都有公平的趋势。在多个数据集(CIFAR-10,CIFAR-100和IMAGENETTE)上进行的广泛实验表明,我们的方法可以显着超过其他基线,以减轻健壮的公平性问题(最坏的类精度为+5-10 \%)
translated by 谷歌翻译
评估防御模型的稳健性是对抗对抗鲁棒性研究的具有挑战性的任务。僵化的渐变,先前已经发现了一种梯度掩蔽,以许多防御方法存在并导致鲁棒性的错误信号。在本文中,我们确定了一种更细微的情况,称为不平衡梯度,也可能导致过高的对抗性鲁棒性。当边缘损耗的一个术语的梯度主导并将攻击朝向次优化方向推动时,发生不平衡梯度的现象。为了利用不平衡的梯度,我们制定了分解利润率损失的边缘分解(MD)攻击,并通过两阶段过程分别探讨了这些术语的攻击性。我们还提出了一个Multared和Ensemble版本的MD攻击。通过调查自2018年以来提出的17个防御模型,我们发现6种型号易受不平衡梯度的影响,我们的MD攻击可以减少由最佳基线独立攻击评估的鲁棒性另外2%。我们还提供了对不平衡梯度的可能原因和有效对策的深入分析。
translated by 谷歌翻译
The study on improving the robustness of deep neural networks against adversarial examples grows rapidly in recent years. Among them, adversarial training is the most promising one, which flattens the input loss landscape (loss change with respect to input) via training on adversarially perturbed examples. However, how the widely used weight loss landscape (loss change with respect to weight) performs in adversarial training is rarely explored. In this paper, we investigate the weight loss landscape from a new perspective, and identify a clear correlation between the flatness of weight loss landscape and robust generalization gap. Several well-recognized adversarial training improvements, such as early stopping, designing new objective functions, or leveraging unlabeled data, all implicitly flatten the weight loss landscape. Based on these observations, we propose a simple yet effective Adversarial Weight Perturbation (AWP) to explicitly regularize the flatness of weight loss landscape, forming a double-perturbation mechanism in the adversarial training framework that adversarially perturbs both inputs and weights. Extensive experiments demonstrate that AWP indeed brings flatter weight loss landscape and can be easily incorporated into various existing adversarial training methods to further boost their adversarial robustness.
translated by 谷歌翻译
对敌对训练(AT)作为最小值优化问题,可以有效地增强模型对对抗攻击的鲁棒性。现有的AT方法主要集中于操纵内部最大化,以生成质量对抗性变体或操纵外部最小化以设计有效的学习目标。然而,始终表现出与准确性和跨界混合物问题存在的鲁棒性的经验结果,这激发了我们研究某些标签随机性以使AT受益。首先,我们分别对AT的内部最大化和外部最小化进行彻底研究嘈杂的标签(NLS)注射,并获得有关NL注射益处AT何时的观察结果。其次,根据观察结果,我们提出了一种简单但有效的方法 - Noilin将NLS随机注入每个训练时期的训练数据,并在发生强大的过度拟合后动态提高NL注入率。从经验上讲,Noilin可以显着减轻AT的不良过度拟合的不良问题,甚至进一步改善了最新方法的概括。从哲学上讲,Noilin阐明了与NLS学习的新观点:NLS不应总是被视为有害的,即使在培训集中没有NLS的情况下,我们也可以考虑故意注射它们。代码可在https://github.com/zjfheart/noilin中找到。
translated by 谷歌翻译
深度神经网络近似高度复杂功能的能力是其成功的关键。但是,这种好处是以巨大的模型大小为代价的,这挑战了其在资源受限环境中的部署。修剪是一种用于限制此问题的有效技术,但通常以降低准确性和对抗性鲁棒性为代价。本文解决了这些缺点,并引入了Deadwooding,这是一种新型的全球修剪技术,它利用了Lagrangian双重方法来鼓励模型稀疏性,同时保持准确性并确保鲁棒性。所得模型显示出在鲁棒性和准确性度量方面的最先进研究大大优于最先进的模型。
translated by 谷歌翻译
Adversarial training, a method for learning robust deep networks, is typically assumed to be more expensive than traditional training due to the necessity of constructing adversarial examples via a first-order method like projected gradient decent (PGD). In this paper, we make the surprising discovery that it is possible to train empirically robust models using a much weaker and cheaper adversary, an approach that was previously believed to be ineffective, rendering the method no more costly than standard training in practice. Specifically, we show that adversarial training with the fast gradient sign method (FGSM), when combined with random initialization, is as effective as PGD-based training but has significantly lower cost. Furthermore we show that FGSM adversarial training can be further accelerated by using standard techniques for efficient training of deep networks, allowing us to learn a robust CIFAR10 classifier with 45% robust accuracy to PGD attacks with = 8/255 in 6 minutes, and a robust ImageNet classifier with 43% robust accuracy at = 2/255 in 12 hours, in comparison to past work based on "free" adversarial training which took 10 and 50 hours to reach the same respective thresholds. Finally, we identify a failure mode referred to as "catastrophic overfitting" which may have caused previous attempts to use FGSM adversarial training to fail. All code for reproducing the experiments in this paper as well as pretrained model weights are at https://github.com/locuslab/fast_adversarial.
translated by 谷歌翻译
深度神经网络(DNNS)最近在许多分类任务中取得了巨大的成功。不幸的是,它们容易受到对抗性攻击的影响,这些攻击会产生对抗性示例,这些示例具有很小的扰动,以欺骗DNN模型,尤其是在模型共享方案中。事实证明,对抗性训练是最有效的策略,它将对抗性示例注入模型训练中,以提高DNN模型的稳健性,以对对抗性攻击。但是,基于现有的对抗性示例的对抗训练无法很好地推广到标准,不受干扰的测试数据。为了在标准准确性和对抗性鲁棒性之间取得更好的权衡,我们提出了一个新型的对抗训练框架,称为潜在边界引导的对抗训练(梯子),该训练(梯子)在潜在的边界引导的对抗性示例上对对手进行对手训练DNN模型。与大多数在输入空间中生成对抗示例的现有方法相反,梯子通过增加对潜在特征的扰动而产生了无数的高质量对抗示例。扰动是沿SVM构建的具有注意机制的决策边界的正常情况进行的。我们从边界场的角度和可视化视图分析了生成的边界引导的对抗示例的优点。与Vanilla DNN和竞争性底线相比,对MNIST,SVHN,CELEBA和CIFAR-10的广泛实验和详细分析验证了梯子在标准准确性和对抗性鲁棒性之间取得更好的权衡方面的有效性。
translated by 谷歌翻译
深度神经网络(DNN)容易受到对抗性示例的影响,其中DNN由于含有不可察觉的扰动而被误导为虚假输出。对抗性训练是一种可靠有效的防御方法,可能会大大减少神经网络的脆弱性,并成为强大学习的事实上的标准。尽管许多最近的作品实践了以数据为中心的理念,例如如何生成更好的对抗性示例或使用生成模型来产生额外的培训数据,但我们回顾了模型本身,并从深度特征分布的角度重新审视对抗性的鲁棒性有见地的互补性。在本文中,我们建议分支正交性对抗训练(BORT)获得最先进的性能,仅使用原始数据集用于对抗训练。为了练习我们整合多个正交解决方案空间的设计思想,我们利用一个简单明了的多分支神经网络,可消除对抗性攻击而不会增加推理时间。我们启发提出相应的损耗函数,分支 - 正交丢失,以使多支出模型正交的每个溶液空间。我们分别在CIFAR-10,CIFAR-100和SVHN上评估了我们的方法,分别针对\ ell _ {\ infty}的规范触发尺寸\ epsilon = 8/255。进行了详尽的实验,以表明我们的方法超出了所有最新方法,而无需任何技巧。与所有不使用其他数据进行培训的方法相比,我们的模型在CIFAR-10和CIFAR-100上实现了67.3%和41.5%的鲁棒精度(在最先进的ART上提高了 +7.23%和 +9.07% )。我们还使用比我们的训练组胜过比我们的方法的表现要大得多。我们所有的模型和代码均可在https://github.com/huangd1999/bort上在线获得。
translated by 谷歌翻译