在自动驾驶领域内朝着更高水平的自动化迈进的进步伴随着对车辆操作安全的需求的增加。由计算资源的限制引起的,算法的计算复杂性之间的权衡及其在确保自动化车辆安全运行的潜力之间经常遇到。情境感知的环境感知提出了一个令人鼓舞的例子,其中计算资源分布在感知区域内的区域,这些区域与自动车辆的任务相关。尽管经常利用先前的地图知识来确定相关区域,但在这项工作中,我们提供了仅依赖在线信息的安全区域的轻量级标识。我们表明,我们的方法可以在关键方案中实现安全的车辆操作,同时在环境感知中保留了不均匀分配资源的好处。
translated by 谷歌翻译
在自动驾驶领域内,环境感知的明显趋势趋于更多的传感器,更高的冗余和计算能力的总体增加。这主要是由范例驱动,以尽可能地掌握整个环境。然而,由于功能复杂性的持续上升,必须考虑妥协以确保感知系统的实时能力。在这项工作中,我们介绍了一种情况感知环境感知的概念,以控制资源分配在数据内处理相关区域,以及仅用于用于环境感知的功能模块的子集,如果足够的驱动任务。具体地,我们建议评估自动化车辆的上下文,以得出定义相关区域的多层注意图(MLAM)。使用此MLAM,动态配置有源功能模块的最佳状态,并强制执行仅相关数据的模块内处理。我们概述了我们概念在手头的直接实施中使用真实数据应用的可行性。在保留整体功能的同时,我们实现了59%的累计处理时间的降低。
translated by 谷歌翻译
自动化代理的环境感知领域的进步导致生成的传感器数据持续增加。处理这些数据的可用计算资源必将变得不足以实时应用程序。通过基于代理商的情况识别最相关的数据(通常称为情况意识)来减少要处理的数据量,并增加了研究的兴趣,并且预计互补方法的重要性将在不久的将来进一步增加。在这项工作中,我们将最近引入的情境感知环境感知概念的适用性范围扩展到Unicaragil项目的分散自动化体系结构。考虑到车辆的特定驾驶能力,并以后处理方式使用有关目标硬件的实际数据,我们提供了每日降低功耗的估计,该功耗累积到36.2%。在实现这些有希望的结果的同时,我们还表明,如果应最佳利用情况意识的好处,则需要考虑软件模块设计中的数据处理中的可扩展性以及功能系统的设计。
translated by 谷歌翻译
在公共道路上大规模的自动车辆部署有可能大大改变当今社会的运输方式。尽管这种追求是在几十年前开始的,但仍有公开挑战可靠地确保此类车辆在开放环境中安全运行。尽管功能安全性是一个完善的概念,但测量车辆行为安全的问题仍然需要研究。客观和计算分析交通冲突的一种方法是开发和利用所谓的关键指标。在与自动驾驶有关的各种应用中,当代方法利用了关键指标的潜力,例如用于评估动态风险或过滤大型数据集以构建方案目录。作为系统地选择适当的批判性指标的先决条件,我们在自动驾驶的背景下广泛回顾了批判性指标,其属性及其应用的现状。基于这篇综述,我们提出了一种适合性分析,作为一种有条不紊的工具,可以由从业者使用。然后,可以利用提出的方法和最新审查的状态来选择涵盖应用程序要求的合理的测量工具,如分析的示例性执行所证明。最终,高效,有效且可靠的衡量自动化车辆安全性能是证明其可信赖性的关键要求。
translated by 谷歌翻译
随着自动驾驶功能(AD)功能的进步,近年来,远程运行越来越受欢迎。通过启用自动化车辆的远程操作,可以将远程处理作为可靠的后备解决方案,用于操作设计域限制和广告功能的边缘案例。多年来,文献中提出了有关人类操作员如何远程支持或替代广告功能的各种不同的远程关系概念。本文介绍了关于道路车辆远程运行概念的文献调查的结果。此外,由于行业内部的兴趣日益增加,对专利和公司整体活动的见解也提出了。
translated by 谷歌翻译
虽然自动车辆安全验证过程的最明显的部分涉及规划和控制系统,但它通常被忽视,后者的安全性至关重要地取决于前面环境感知的容错。现代感知系统具有复杂且经常基于机器学习的组件,具有各种故障模式,可以危及整体安全性。同时,由于资源约束,例如冗余执行的验证并不总是可行的。在本文中,我们解决了可行和高效的感知监视器的需求,并提出了一种轻质方法,有助于保护感知系统的完整性,同时保持额外的计算开销最小值。与现有解决方案相比,通过传感器检查的良好平衡组合来实现监视器 - 在此处使用LIDAR信息和对象运动历史上的合理性检查。它旨在检测自动化车辆环境中对象的距离和速度中的相关误差。结合适当的规划系统,这种监视器可以帮助安全自动化驱动可行。
translated by 谷歌翻译
自动化驾驶系统(广告)开辟了汽车行业的新领域,为未来的运输提供了更高的效率和舒适体验的新可能性。然而,在恶劣天气条件下的自主驾驶已经存在,使自动车辆(AVS)长时间保持自主车辆(AVS)或更高的自主权。本文评估了天气在分析和统计方式中为广告传感器带来的影响和挑战,并对恶劣天气条件进行了解决方案。彻底报道了关于对每种天气的感知增强的最先进技术。外部辅助解决方案如V2X技术,当前可用的数据集,模拟器和天气腔室的实验设施中的天气条件覆盖范围明显。通过指出各种主要天气问题,自主驾驶场目前正在面临,近年来审查硬件和计算机科学解决方案,这项调查概述了在不利的天气驾驶条件方面的障碍和方向的障碍和方向。
translated by 谷歌翻译
对自动驾驶的运动计划的安全保证通常涉及在环境中无法控制的参与者(例如道路上的人类驱动的车辆)的任何动作下进行无碰撞的轨迹。结果,他们通常对此类参与者的行为采用保守的束缚,例如可达性分析。我们指出,规划轨迹严格避免全部可覆盖区域是不必要的,而且过于限制,因为将来观察环境将使我们能够修剪大多数。无视这种对未来更新的能力的能力可以禁止对人类驾驶员轻松导航的方案的解决方案。我们建议通过新颖的安全框架,全面的反应性安全来解释自动驾驶汽车对未来环境的反应。在模拟中验证了几种城市驾驶场景,例如未受保护的左转弯和车道合并,所得的计划算法称为反应性ILQR,表现出强大的谈判能力和更好的安全性。
translated by 谷歌翻译
汽车行业在过去几十年中见证了越来越多的发展程度;从制造手动操作车辆到具有高自动化水平的制造车辆。随着近期人工智能(AI)的发展,汽车公司现在雇用BlackBox AI模型来使车辆能够感知其环境,并使人类少或没有输入的驾驶决策。希望能够在商业规模上部署自治车辆(AV),通过社会接受AV成为至关重要的,并且可能在很大程度上取决于其透明度,可信度和遵守法规的程度。通过为AVS行为的解释提供对这些接受要求的遵守对这些验收要求的评估。因此,解释性被视为AVS的重要要求。 AV应该能够解释他们在他们运作的环境中的“见到”。在本文中,我们对可解释的自动驾驶的现有工作体系进行了全面的调查。首先,我们通过突出显示并强调透明度,问责制和信任的重要性来开放一个解释的动机;并审查与AVS相关的现有法规和标准。其次,我们识别并分类了参与发展,使用和监管的不同利益相关者,并引出了AV的解释要求。第三,我们对以前的工作进行了严格的审查,以解释不同的AV操作(即,感知,本地化,规划,控制和系统管理)。最后,我们确定了相关的挑战并提供建议,例如AV可解释性的概念框架。该调查旨在提供对AVS中解释性感兴趣的研究人员所需的基本知识。
translated by 谷歌翻译
预测环境的未来占用状态对于实现自动驾驶汽车的明智决定很重要。占用预测中的常见挑战包括消失的动态对象和模糊的预测,尤其是对于长期预测范围。在这项工作中,我们提出了一个双独沟的神经网络体系结构,以预测占用状态的时空演化。一个插脚致力于预测移动的自我车辆将如何观察到静态环境。另一个插脚预测环境中的动态对象将如何移动。在现实Waymo开放数据集上进行的实验表明,两个插脚的融合输出能够保留动态对象并减少预测中比基线模型更长的预测时间范围。
translated by 谷歌翻译
自动驾驶在过去十年中取得了重大的研究和发展中的重要里程碑。在道路上的自动车辆部署时,对该领域的兴趣越来越令人兴趣,承诺更安全,更生态的运输系统。随着计算强大的人工智能(AI)技术的兴起,自动车辆可以用高精度感测它们的环境,进行安全的实时决策,并在没有人类干预的情况下更可靠地运行。然而,在现有技术中,人类智能决策通常不可能理解,这种缺陷阻碍了这种技术在社会上可接受。因此,除了制造安全的实时决策之外,自治车辆的AI系统还需要解释如何构建这些决策,以便在许多司法管辖区兼容监管。我们的研究在开发可解释的人工智能(XAI)的自治车辆方法上阐明了全面的光芒。特别是,我们做出以下贡献。首先,我们在最先进的自主车辆行业的解释方面彻底概述了目前的差距。然后,我们显示了该领域的解释和解释接收器的分类。第三,我们为端到端自主驾驶系统的架构提出了一个框架,并证明了Xai在调试和调节这些系统中的作用。最后,作为未来的研究方向,我们提供了XAI自主驾驶方法的实地指南,可以提高运营安全性和透明度,以实现监管机构,制造商和所有参与利益相关者的公共批准。
translated by 谷歌翻译
我们的运输世界正在迅速转变,自治水平不断提高。但是,为了获得全自动车辆的许可以供广泛的公众使用,有必要确保整个系统的安全性,这仍然是一个挑战。这尤其适用于基于AI的感知系统,这些系统必须处理各种环境条件和道路使用者,与此同时,应强调地检测所有相关的对象(即不应发生检测失误)。然而,有限的培训和验证数据可以证明无故障操作几乎无法实现,因为感知系统可能会暴露于公共道路上的新事物或未知的物体或条件。因此,需要针对基于AI的感知系统的新安全方法。因此,我们在本文中提出了一种新型的层次监视方法,能够从主要感知系统验证对象列表,可以可靠地检测检测失误,同时具有非常低的错误警报率。
translated by 谷歌翻译
近年来,道路安全引起了智能运输系统领域的研究人员和从业者的重大关注。作为最常见的道路用户群体之一,行人由于其不可预测的行为和运动而导致令人震惊,因为车辆行人互动的微妙误解可以很容易地导致风险的情况或碰撞。现有方法使用预定义的基于碰撞的模型或人类标签方法来估计行人的风险。这些方法通常受到他们的概括能力差,缺乏对自我车辆和行人之间的相互作用的限制。这项工作通过提出行人风险级预测系统来解决所列问题。该系统由三个模块组成。首先,收集车辆角度的行人数据。由于数据包含关于自我车辆和行人的运动的信息,因此可以简化以交互感知方式预测时空特征的预测。使用长短短期存储器模型,行人轨迹预测模块预测后续五个框架中的时空特征。随着预测的轨迹遵循某些交互和风险模式,采用混合聚类和分类方法来探讨时空特征中的风险模式,并使用学习模式训练风险等级分类器。在预测行人的时空特征并识别相应的风险水平时,确定自我车辆和行人之间的风险模式。实验结果验证了PRLP系统的能力,以预测行人的风险程度,从而支持智能车辆的碰撞风险评估,并为车辆和行人提供安全警告。
translated by 谷歌翻译
随着自动驾驶汽车(AV)开发的发展,对环境中乘客和代理商的安全性的担忧已经上升。涉及自主控制车辆的每个现实世界交通碰撞都使这种担忧加剧了。开源自主驾驶实现显示了具有复杂相互依赖任务的软件体系结构,这很大程度上依赖于机器学习和深层神经网络(DNN),这些任务容易受到非确定性故障和角落案例的影响。这些复杂的子系统共同履行AV的任务,同时还保持安全性。尽管在提高对这些系统的经验可靠性和信心方面正在做出重大改进,但DNN验证的固有局限性在提供AV中提供确定性安全保证方面却引起了无法克服的挑战。我们提出了协同冗余(SR),这是一种用于复杂网络物理系统的安全架构,例如AV。 SR通过将系统的任务和安全任务解耦来提供可验证的安全保证。在独立履行其主要角色的同时,部分功能多余的任务和安全任务能够相互帮助,从而协同改善合并的系统。协同安全层仅使用可验证且可分析的软件来完成其任务。与任务层的密切协调可以更轻松,更早地检测系统中的紧急故障。 SR简化了任务层的优化目标并改进了其设计。 SR提供了高性能的安全部署,尽管本质上无法验证的机器学习软件。在这项工作中,我们首先介绍SR体系结构的设计和功能,然后评估解决方案的功效,重点关注AV中障碍物存在故障的关键问题。
translated by 谷歌翻译
对于流量场景的分类,可以以统一的方式描述场景的描述模型,无关,无关。本文描述了一种以语义方式描述交通场景的模型。描述模型允许独立于道路几何和道路拓扑描述交通场景。这里,流量参与者将投影到道路网络上并表示为图中的节点。根据两个交通参与者之间关于道路拓扑的相对位置,在相应节点之间创建语义分类边。为了具体化,边缘属性通过两次交通参与者之间的相对距离和速度而言,关于车道的过程。描述的一个重要方面是它可以容易地转换为机器可读格式。当前描述侧重于交通场景的动态对象,并考虑交通参与者,例如行人或车辆。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
This paper describes Waymo's Collision Avoidance Testing (CAT) methodology: a scenario-based testing method that evaluates the safety of the Waymo Driver Automated Driving Systems' (ADS) intended functionality in conflict situations initiated by other road users that require urgent evasive maneuvers. Because SAE Level 4 ADS are responsible for the dynamic driving task (DDT), when engaged, without immediate human intervention, evaluating a Level 4 ADS using scenario-based testing is difficult due to the potentially infinite number of operational scenarios in which hazardous situations may unfold. To that end, in this paper we first describe the safety test objectives for the CAT methodology, including the collision and serious injury metrics and the reference behavior model representing a non-impaired eyes on conflict human driver used to form an acceptance criterion. Afterward, we introduce the process for identifying potentially hazardous situations from a combination of human data, ADS testing data, and expert knowledge about the product design and associated Operational Design Domain (ODD). The test allocation and execution strategy is presented next, which exclusively utilize simulations constructed from sensor data collected on a test track, real-world driving, or from simulated sensor data. The paper concludes with the presentation of results from applying CAT to the fully autonomous ride-hailing service that Waymo operates in San Francisco, California and Phoenix, Arizona. The iterative nature of scenario identification, combined with over ten years of experience of on-road testing, results in a scenario database that converges to a representative set of responder role scenarios for a given ODD. Using Waymo's virtual test platform, which is calibrated to data collected as part of many years of ADS development, the CAT methodology provides a robust and scalable safety evaluation.
translated by 谷歌翻译
The last decade witnessed increasingly rapid progress in self-driving vehicle technology, mainly backed up by advances in the area of deep learning and artificial intelligence. The objective of this paper is to survey the current state-of-the-art on deep learning technologies used in autonomous driving. We start by presenting AI-based self-driving architectures, convolutional and recurrent neural networks, as well as the deep reinforcement learning paradigm. These methodologies form a base for the surveyed driving scene perception, path planning, behavior arbitration and motion control algorithms. We investigate both the modular perception-planning-action pipeline, where each module is built using deep learning methods, as well as End2End systems, which directly map sensory information to steering commands. Additionally, we tackle current challenges encountered in designing AI architectures for autonomous driving, such as their safety, training data sources and computational hardware. The comparison presented in this survey helps to gain insight into the strengths and limitations of deep learning and AI approaches for autonomous driving and assist with design choices. 1
translated by 谷歌翻译
为了实现安全的自动驾驶汽车(AV)操作,至关重要的是,AV的障碍检测模块可以可靠地检测出构成安全威胁的障碍物(即是安全至关重要的)。因此,希望对感知系统的评估指标捕获对象的安全性 - 临界性。不幸的是,现有的感知评估指标倾向于对物体做出强烈的假设,而忽略了代理之间的动态相互作用,因此不能准确地捕获现实中的安全风险。为了解决这些缺点,我们通过考虑自我车辆和现场障碍之间的闭环动态相互作用来引入互动障碍感知障碍检测评估度量指标。通过从最佳控制理论借用现有理论,即汉密尔顿 - 雅各比的可达性,我们提出了一种可构造``安全区域''的计算障碍方法:一个国家空间中的一个区域,该区域定义了安全 - 关键障碍为了定义安全目的的位置指标。我们提出的安全区已在数学上完成,并且可以轻松计算以反映各种安全要求。使用Nuscenes检测挑战排行榜的现成检测算法,我们证明我们的方法是计算轻量级,并且可以更好地捕获与基线方法更好地捕获关键的安全感知错误。
translated by 谷歌翻译
两栖地面汽车将飞行和驾驶模式融合在一起,以实现更灵活的空中行动能力,并且最近受到了越来越多的关注。通过分析现有的两栖车辆,我们强调了在复杂的三维城市运输系统中有效使用两栖车辆的自动驾驶功能。我们审查并总结了现有两栖车辆设计中智能飞行驾驶的关键促成技术,确定主要的技术障碍,并提出潜在的解决方案,以实现未来的研究和创新。本文旨在作为研究和开发智能两栖车辆的指南,以实现未来的城市运输。
translated by 谷歌翻译