在这封信中,我们提出了一个可靠的实时,实时的,惯性导航系统(INS) - 中心的GNSS-视觉惯性导航系统(IC-GVIN),用于轮式机器人,其中在两个状态估计中都可以完全利用精确的INS和视觉过程。为了改善系统的鲁棒性,通过严格的离群策略,在整个基于关键帧的视觉过程中采用了INS信息。采用GNSS来执行IC-GVIN的准确和方便的初始化,并进一步用于在大规模环境中实现绝对定位。 IMU,Visual和GNSS测量值紧密地融合在因子图优化的框架内。进行了专用的实验,以评估轮式机器人上IC-GVIN的鲁棒性和准确性。 IC-GVIN在带有移动对象的各种视觉降低场景中表现出卓越的鲁棒性。与最先进的视觉惯性导航系统相比,所提出的方法在各种环境中都能提高鲁棒性和准确性。我们开源的代码与GitHub上的数据集结合在一起
translated by 谷歌翻译
A monocular visual-inertial system (VINS), consisting of a camera and a low-cost inertial measurement unit (IMU), forms the minimum sensor suite for metric six degreesof-freedom (DOF) state estimation. However, the lack of direct distance measurement poses significant challenges in terms of IMU processing, estimator initialization, extrinsic calibration, and nonlinear optimization. In this work, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initialization and failure recovery. A tightly-coupled, nonlinear optimization-based method is used to obtain high accuracy visual-inertial odometry by fusing pre-integrated IMU measurements and feature observations. A loop detection module, in combination with our tightly-coupled formulation, enables relocalization with minimum computation overhead. We additionally perform four degrees-of-freedom pose graph optimization to enforce global consistency. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform onboard closed-loop autonomous flight on the MAV platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy localization. We open source our implementations for both PCs 1 and iOS mobile devices 2 .
translated by 谷歌翻译
通过实现复杂场景实现长期漂移相机姿势估计的目标,我们提出了一种全球定位框架,融合了多层的视觉,惯性和全球导航卫星系统(GNSS)测量。不同于以前的松散和紧密耦合的方法,所提出的多层融合允许我们彻底校正视觉测量仪的漂移,并在GNSS降解时保持可靠的定位。特别地,通过融合GNSS的速度,在紧紧地集成的情况下,解决视觉测量测量测量测量率和偏差估计中的尺度漂移和偏差估计的问题的问题,惯性测量单元(IMU)的预集成以及紧密相机测量的情况下 - 耦合的方式。在外层中实现全局定位,其中局部运动进一步与GNSS位置和基于长期时期的过程以松散耦合的方式融合。此外,提出了一种专用的初始化方法,以保证所有状态变量和参数的快速准确估计。我们为室内和室外公共数据集提供了拟议框架的详尽测试。平均本地化误差减少了63%,而初始化精度与最先进的工程相比,促销率为69%。我们已将算法应用于增强现实(AR)导航,人群采购高精度地图更新等大型应用。
translated by 谷歌翻译
事件摄像机是运动激活的传感器,可捕获像素级照明的变化,而不是具有固定帧速率的强度图像。与标准摄像机相比,它可以在高速运动和高动态范围场景中提供可靠的视觉感知。但是,当相机和场景之间的相对运动受到限制时,例如在静态状态下,事件摄像机仅输出一点信息甚至噪音。尽管标准相机可以在大多数情况下,尤其是在良好的照明条件下提供丰富的感知信息。这两个相机完全是互补的。在本文中,我们提出了一种具有鲁棒性,高智能和实时优化的基于事件的视觉惯性镜(VIO)方法,具有事件角度,基于线的事件功能和基于点的图像功能。提出的方法旨在利用人为场景中的自然场景和基于线路的功能中的基于点的功能,以通过设计良好设计的功能管理提供更多其他结构或约束信息。公共基准数据集中的实验表明,与基于图像或基于事件的VIO相比,我们的方法可以实现卓越的性能。最后,我们使用我们的方法演示了机上闭环自动驾驶四极管飞行和大规模室外实验。评估的视频在我们的项目网站上介绍:https://b23.tv/oe3qm6j
translated by 谷歌翻译
我们提供了一种基于因子图优化的多摄像性视觉惯性内径系统,该系统通过同时使用所有相机估计运动,同时保留固定的整体特征预算。我们专注于在挑战环境中的运动跟踪,例如狭窄的走廊,具有侵略性动作的黑暗空间,突然的照明变化。这些方案导致传统的单眼或立体声测量失败。在理论上,使用额外的相机跟踪运动,但它会导致额外的复杂性和计算负担。为了克服这些挑战,我们介绍了两种新的方法来改善多相机特征跟踪。首先,除了从一体相机移动到另一个相机时,我们连续地跟踪特征的代替跟踪特征。这提高了准确性并实现了更紧凑的因子图表示。其次,我们选择跨摄像机的跟踪功能的固定预算,以降低反向结束优化时间。我们发现,使用较小的信息性功能可以保持相同的跟踪精度。我们所提出的方法使用由IMU和四个摄像机(前立体网和两个侧面)组成的硬件同步装置进行广泛测试,包括:地下矿,大型开放空间,以及带狭窄楼梯和走廊的建筑室内设计。与立体声最新的视觉惯性内径测量方法相比,我们的方法将漂移率,相对姿势误差,高达80%的翻译和旋转39%降低。
translated by 谷歌翻译
GNSS and LiDAR odometry are complementary as they provide absolute and relative positioning, respectively. Their integration in a loosely-coupled manner is straightforward but is challenged in urban canyons due to the GNSS signal reflections. Recent proposed 3D LiDAR-aided (3DLA) GNSS methods employ the point cloud map to identify the non-line-of-sight (NLOS) reception of GNSS signals. This facilitates the GNSS receiver to obtain improved urban positioning but not achieve a sub-meter level. GNSS real-time kinematics (RTK) uses carrier phase measurements to obtain decimeter-level positioning. In urban areas, the GNSS RTK is not only challenged by multipath and NLOS-affected measurement but also suffers from signal blockage by the building. The latter will impose a challenge in solving the ambiguity within the carrier phase measurements. In the other words, the model observability of the ambiguity resolution (AR) is greatly decreased. This paper proposes to generate virtual satellite (VS) measurements using the selected LiDAR landmarks from the accumulated 3D point cloud maps (PCM). These LiDAR-PCM-made VS measurements are tightly-coupled with GNSS pseudorange and carrier phase measurements. Thus, the VS measurements can provide complementary constraints, meaning providing low-elevation-angle measurements in the across-street directions. The implementation is done using factor graph optimization to solve an accurate float solution of the ambiguity before it is fed into LAMBDA. The effectiveness of the proposed method has been validated by the evaluation conducted on our recently open-sourced challenging dataset, UrbanNav. The result shows the fix rate of the proposed 3DLA GNSS RTK is about 30% while the conventional GNSS-RTK only achieves about 14%. In addition, the proposed method achieves sub-meter positioning accuracy in most of the data collected in challenging urban areas.
translated by 谷歌翻译
农业行业不断寻求农业生产中涉及的不同过程的自动化,例如播种,收获和杂草控制。使用移动自主机器人执行这些任务引起了极大的兴趣。耕地面向同时定位和映射(SLAM)系统(移动机器人技术的关键)面临着艰巨的挑战,这是由于视觉上的难度,这是由于高度重复的场景而引起的。近年来,已经开发了几种视觉惯性遗传(VIO)和SLAM系统。事实证明,它们在室内和室外城市环境中具有很高的准确性。但是,在农业领域未正确评估它们。在这项工作中,我们从可耕地上的准确性和处理时间方面评估了最相关的最新VIO系统,以便更好地了解它们在这些环境中的行为。特别是,该评估是在我们的车轮机器人记录的大豆领域记录的传感器数据集中进行的,该田间被公开发行为Rosario数据集。评估表明,环境的高度重复性外观,崎terrain的地形产生的强振动以及由风引起的叶子的运动,暴露了当前最新的VIO和SLAM系统的局限性。我们分析了系统故障并突出观察到的缺点,包括初始化故障,跟踪损失和对IMU饱和的敏感性。最后,我们得出的结论是,即使某些系统(例如Orb-Slam3和S-MSCKF)在其他系统方面表现出良好的结果,但应采取更多改进,以使其在某些申请中的农业领域可靠,例如作物行的土壤耕作和农药喷涂。 。
translated by 谷歌翻译
我们提出了一种准确而坚固的多模态传感器融合框架,Metroloc,朝着最极端的场景之一,大规模地铁车辆本地化和映射。 Metroloc在以IMU为中心的状态估计器上构建,以较轻耦合的方法紧密地耦合光检测和测距(LIDAR),视觉和惯性信息。所提出的框架由三个子模块组成:IMU Odometry,LiDar - 惯性内径术(LIO)和视觉惯性内径(VIO)。 IMU被视为主要传感器,从LIO和VIO实现了从LIO和VIO的观察,以限制加速度计和陀螺仪偏差。与以前的点LIO方法相比,我们的方法通过将线路和平面特征引入运动估计来利用更多几何信息。 VIO还通过使用两条线和点来利用环境结构信息。我们所提出的方法在具有维护车辆的长期地铁环境中广泛测试。实验结果表明,该系统比使用实时性能的最先进的方法更准确和强大。此外,我们开发了一系列虚拟现实(VR)应用,以实现高效,经济,互动的轨道车辆状态和轨道基础设施监控,已经部署到室外测试铁路。
translated by 谷歌翻译
随着线提供额外的约束,利用线特征可以有助于提高基于点的单眼视觉惯性内径(VIO)系统的定位精度。此外,在人工环境中,一些直线彼此平行。在本文中,我们设计了一种基于点和直线的VIO系统,它将直线分成结构直线(即彼此平行的直线)和非结构直线。另外,与使用四个参数表示3D直线的正交表示不同,我们仅使用两个参数来最小化结构直线和非结构直线的表示。此外,我们设计了一种基于采样点的直线匹配策略,提高了直线匹配的效率和成功率。我们的方法的有效性在EUROC和TUM VI基准的公共数据集上验证,与其他最先进的算法相比。
translated by 谷歌翻译
同时定位和映射(SLAM)对于自主机器人(例如自动驾驶汽车,自动无人机),3D映射系统和AR/VR应用至关重要。这项工作提出了一个新颖的LIDAR惯性 - 视觉融合框架,称为R $^3 $ LIVE ++,以实现强大而准确的状态估计,同时可以随时重建光线体图。 R $^3 $ LIVE ++由LIDAR惯性探针(LIO)和视觉惯性探测器(VIO)组成,均为实时运行。 LIO子系统利用从激光雷达的测量值重建几何结构(即3D点的位置),而VIO子系统同时从输入图像中同时恢复了几何结构的辐射信息。 r $^3 $ live ++是基于r $^3 $ live开发的,并通过考虑相机光度校准(例如,非线性响应功能和镜头渐滴)和相机的在线估计,进一步提高了本地化和映射的准确性和映射接触时间。我们对公共和私人数据集进行了更广泛的实验,以将我们提出的系统与其他最先进的SLAM系统进行比较。定量和定性结果表明,我们所提出的系统在准确性和鲁棒性方面对其他系统具有显着改善。此外,为了证明我们的工作的可扩展性,{我们基于重建的辐射图开发了多个应用程序,例如高动态范围(HDR)成像,虚拟环境探索和3D视频游戏。}最后,分享我们的发现和我们的发现和为社区做出贡献,我们在GitHub上公开提供代码,硬件设计和数据集:github.com/hku-mars/r3live
translated by 谷歌翻译
在本文中,我们提出了用于滚动快门摄像机的概率连续时间视觉惯性频道(VIO)。连续的时轨迹公式自然促进异步高频IMU数据和运动延伸的滚动快门图像的融合。为了防止棘手的计算负载,提出的VIO是滑动窗口和基于密钥帧的。我们建议概率地将控制点边缘化,以保持滑动窗口中恒定的密钥帧数。此外,可以在我们的连续时间VIO中在线校准滚动快门相机的线曝光时间差(线延迟)。为了广泛检查我们的连续时间VIO的性能,对公共可用的WHU-RSVI,TUM-RSVI和Sensetime-RSVI Rolling快门数据集进行了实验。结果表明,提出的连续时间VIO显着优于现有的最新VIO方法。本文的代码库也将通过\ url {https://github.com/april-zju/ctrl-vio}开源。
translated by 谷歌翻译
准确的本地化是机器人导航系统的核心组成部分。为此,全球导航卫星系统(GNSS)可以在户外提供绝对的测量,因此消除了长期漂移。但是,将GNSS数据与其他传感器数据进行融合并不是微不足道的,尤其是当机器人在有和没有天空视图的区域之间移动时。我们提出了一种可靠的方法,该方法将原始GNSS接收器数据与惯性测量以及可选的LIDAR观测值紧密地融合在一起,以进行精确和光滑的移动机器人定位。提出了具有两种类型的GNSS因子的因子图。首先,基于伪龙的因素,该因素允许地球上进行全球定位。其次,基于载体阶段的因素,该因素可以实现高度准确的相对定位,这在对其他感应方式受到挑战时很有用。与传统的差异GNS不同,这种方法不需要与基站的连接。在公共城市驾驶数据集上,我们的方法达到了与最先进的算法相当的精度,该算法将视觉惯性探测器与GNSS数据融合在一起 - 尽管我们的方法不使用相机,但仅使用了惯性和GNSS数据。我们还使用来自汽车的数据以及在森林(例如森林)的环境中移动的四倍的机器人,证明了方法的鲁棒性。全球地球框架中的准确性仍然为1-2 m,而估计的轨迹无不连续性和光滑。我们还展示了如何紧密整合激光雷达测量值。我们认为,这是第一个将原始GNSS观察(而不是修复)与LIDAR融合在一起的系统。
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译
视觉惯性化学测定法吸引了自主驾驶和机器人技术领域的广泛关注。视场(FOV)的大小在视觉播音(VO)和视觉惯性二次测量法(VO)中起着重要作用,作为大型FOV,可以感知各种周围的场景元素和特征。但是,当摄像机的字段到达负半平面时,就不能简单地使用[u,v,1]^t来表示图像特征点。为了解决这个问题,我们建议LF-VIO,这是一个具有极大FOV的相机的实时VIO框架。我们利用具有单位长度的三维矢量来表示特征点,并设计一系列算法来克服这一挑战。为了解决带有地位的位置和姿势的全景视觉探针数据集的稀缺性,我们介绍了Palvio数据集,该数据集用具有360 {\ deg} x的整个FOV的全景环形镜头(PAL)系统收集(40 {\ deg}) -120 {\ deg})和IMU传感器。有了全面的实验,在已建立的Palvio基准和公共Fisheye摄像机数据集上验证了建议的LF-VIO,其FOV为360 {\ deg} x(0 {\ deg} -93.5 {\ deg})。 LF-VIO优于最先进的视觉惯性 - 调节法。我们的数据集和代码可在https://github.com/flysoaryun/lf-vio上公开提供。
translated by 谷歌翻译
现代视觉惯性导航系统(VINS)面临着实际部署中的一个关键挑战:他们需要在高度动态的环境中可靠且强大地运行。当前最佳解决方案仅根据对象类别的语义将动态对象过滤为异常值。这样的方法不缩放,因为它需要语义分类器来包含所有可能移动的对象类;这很难定义,更不用说部署。另一方面,许多现实世界的环境以墙壁和地面等平面形式表现出强大的结构规律,这也是至关重要的。我们呈现RP-VIO,一种单眼视觉惯性内径系统,可以利用这些平面的简单几何形状,以改善充满活力环境的鲁棒性和准确性。由于现有数据集具有有限数量的动态元素,因此我们还提供了一种高动态的光致态度合成数据集,用于更有效地对现代VINS系统的功能的评估。我们评估我们在该数据集中的方法,以及来自标准数据集的三个不同序列,包括两个真实的动态序列,并在最先进的单眼视觉惯性内径系统上显示出鲁棒性和准确性的显着提高。我们还显示在模拟中,通过简单的动态特征掩蔽方法改进。我们的代码和数据集是公开可用的。
translated by 谷歌翻译
在本文中,我们提出了一个紧密耦合的视觉惯性对象级多效性动态大满贯系统。即使在极其动态的场景中,它也可以为摄像机姿势,速度,IMU偏见并构建一个密集的3D重建对象级映射图。我们的系统可以通过稳健的传感器和对象跟踪,可以强牢固地跟踪和重建任意对象的几何形状,其语义和运动的几何形状,其语义和运动的几何形状,并通过逐步融合相关的颜色,深度,语义和前景对象概率概率。此外,当对象在视野视野外丢失或移动时,我们的系统可以在重新观察时可靠地恢复其姿势。我们通过定量和定性测试现实世界数据序列来证明我们方法的鲁棒性和准确性。
translated by 谷歌翻译
Event cameras that asynchronously output low-latency event streams provide great opportunities for state estimation under challenging situations. Despite event-based visual odometry having been extensively studied in recent years, most of them are based on monocular and few research on stereo event vision. In this paper, we present ESVIO, the first event-based stereo visual-inertial odometry, which leverages the complementary advantages of event streams, standard images and inertial measurements. Our proposed pipeline achieves temporal tracking and instantaneous matching between consecutive stereo event streams, thereby obtaining robust state estimation. In addition, the motion compensation method is designed to emphasize the edge of scenes by warping each event to reference moments with IMU and ESVIO back-end. We validate that both ESIO (purely event-based) and ESVIO (event with image-aided) have superior performance compared with other image-based and event-based baseline methods on public and self-collected datasets. Furthermore, we use our pipeline to perform onboard quadrotor flights under low-light environments. A real-world large-scale experiment is also conducted to demonstrate long-term effectiveness. We highlight that this work is a real-time, accurate system that is aimed at robust state estimation under challenging environments.
translated by 谷歌翻译
安装在微空中车辆(MAV)上的地面穿透雷达是有助于协助人道主义陆地间隙的工具。然而,合成孔径雷达图像的质量取决于雷达天线的准确和精确运动估计以及与MAV产生信息性的观点。本文介绍了一个完整的自动空气缩进的合成孔径雷达(GPSAR)系统。该系统由空间校准和时间上同步的工业级传感器套件组成,使得在地面上方,雷达成像和光学成像。自定义任务规划框架允许在地上控制地上的Stripmap和圆形(GPSAR)轨迹的生成和自动执行,以及空中成像调查飞行。基于因子图基于Dual接收机实时运动(RTK)全局导航卫星系统(GNSS)和惯性测量单元(IMU)的测量值,以获得精确,高速平台位置和方向。地面真理实验表明,传感器时机为0.8美元,正如0.1美元的那样,定位率为1 kHz。与具有不确定标题初始化的单个位置因子相比,双位置因子配方可提高高达40%,批量定位精度高达59%。我们的现场试验验证了本地化准确性和精度,使得能够相干雷达测量和检测在沙子中埋入的雷达目标。这验证了作为鸟瞰着地图检测系统的潜力。
translated by 谷歌翻译
本文通过讨论参加了为期三年的SubT竞赛的六支球队的不同大满贯策略和成果,报道了地下大满贯的现状。特别是,本文有四个主要目标。首先,我们审查团队采用的算法,架构和系统;特别重点是以激光雷达以激光雷达为中心的SLAM解决方案(几乎所有竞争中所有团队的首选方法),异质的多机器人操作(包括空中机器人和地面机器人)和现实世界的地下操作(从存在需要处理严格的计算约束的晦涩之处)。我们不会回避讨论不同SubT SLAM系统背后的肮脏细节,这些系统通常会从技术论文中省略。其次,我们通过强调当前的SLAM系统的可能性以及我们认为与一些良好的系统工程有关的范围来讨论该领域的成熟度。第三,我们概述了我们认为是基本的开放问题,这些问题可能需要进一步的研究才能突破。最后,我们提供了在SubT挑战和相关工作期间生产的开源SLAM实现和数据集的列表,并构成了研究人员和从业人员的有用资源。
translated by 谷歌翻译
在本文中,我们提出了一个与RGB,深度,IMU和结构化平面信息融合的紧密耦合的大满贯系统。传统的基于稀疏点的大满贯系统始终保持大量地图点以建模环境。大量的地图点使我们具有很高的计算复杂性,因此很难在移动设备上部署。另一方面,平面是人造环境中的常见结构,尤其是在室内环境中。我们通常可以使用少量飞机代表大型场景。因此,本文的主要目的是降低基于稀疏点的大满贯的高复杂性。我们构建了一个轻巧的后端地图,该地图由几个平面和地图点组成,以相等或更高的精度实现有效的捆绑捆绑调整(BA)。我们使用统计约束来消除优化中众多平面点的参数,并降低BA的复杂性。我们将同构和点对平面约束的参数和测量分开,并压缩测量部分,以进一步有效地提高BA的速度。我们还将平面信息集成到整个系统中,以实现强大的平面特征提取,数据关联和全球一致的平面重建。最后,我们进行消融研究,并用模拟和真实环境数据中的类似方法比较我们的方法。我们的系统在准确性和效率方面具有明显的优势。即使平面参数参与了优化,我们也可以使用平面结构有效地简化后端图。全局捆绑捆绑调整的速度几乎是基于稀疏点的SLAM算法的2倍。
translated by 谷歌翻译