在本文中,我们提出了一个与RGB,深度,IMU和结构化平面信息融合的紧密耦合的大满贯系统。传统的基于稀疏点的大满贯系统始终保持大量地图点以建模环境。大量的地图点使我们具有很高的计算复杂性,因此很难在移动设备上部署。另一方面,平面是人造环境中的常见结构,尤其是在室内环境中。我们通常可以使用少量飞机代表大型场景。因此,本文的主要目的是降低基于稀疏点的大满贯的高复杂性。我们构建了一个轻巧的后端地图,该地图由几个平面和地图点组成,以相等或更高的精度实现有效的捆绑捆绑调整(BA)。我们使用统计约束来消除优化中众多平面点的参数,并降低BA的复杂性。我们将同构和点对平面约束的参数和测量分开,并压缩测量部分,以进一步有效地提高BA的速度。我们还将平面信息集成到整个系统中,以实现强大的平面特征提取,数据关联和全球一致的平面重建。最后,我们进行消融研究,并用模拟和真实环境数据中的类似方法比较我们的方法。我们的系统在准确性和效率方面具有明显的优势。即使平面参数参与了优化,我们也可以使用平面结构有效地简化后端图。全局捆绑捆绑调整的速度几乎是基于稀疏点的SLAM算法的2倍。
translated by 谷歌翻译
This paper presents ORB-SLAM3, the first system able to perform visual, visual-inertial and multi-map SLAM with monocular, stereo and RGB-D cameras, using pin-hole and fisheye lens models.The first main novelty is a feature-based tightly-integrated visual-inertial SLAM system that fully relies on Maximum-a-Posteriori (MAP) estimation, even during the IMU initialization phase. The result is a system that operates robustly in real time, in small and large, indoor and outdoor environments, and is two to ten times more accurate than previous approaches.The second main novelty is a multiple map system that relies on a new place recognition method with improved recall. Thanks to it, ORB-SLAM3 is able to survive to long periods of poor visual information: when it gets lost, it starts a new map that will be seamlessly merged with previous maps when revisiting mapped areas. Compared with visual odometry systems that only use information from the last few seconds, ORB-SLAM3 is the first system able to reuse in all the algorithm stages all previous information. This allows to include in bundle adjustment co-visible keyframes, that provide high parallax observations boosting accuracy, even if they are widely separated in time or if they come from a previous mapping session.Our experiments show that, in all sensor configurations, ORB-SLAM3 is as robust as the best systems available in the literature, and significantly more accurate. Notably, our stereo-inertial SLAM achieves an average accuracy of 3.5 cm in the EuRoC drone and 9 mm under quick hand-held motions in the room of TUM-VI dataset, a setting representative of AR/VR scenarios. For the benefit of the community we make public the source code.
translated by 谷歌翻译
A monocular visual-inertial system (VINS), consisting of a camera and a low-cost inertial measurement unit (IMU), forms the minimum sensor suite for metric six degreesof-freedom (DOF) state estimation. However, the lack of direct distance measurement poses significant challenges in terms of IMU processing, estimator initialization, extrinsic calibration, and nonlinear optimization. In this work, we present VINS-Mono: a robust and versatile monocular visual-inertial state estimator. Our approach starts with a robust procedure for estimator initialization and failure recovery. A tightly-coupled, nonlinear optimization-based method is used to obtain high accuracy visual-inertial odometry by fusing pre-integrated IMU measurements and feature observations. A loop detection module, in combination with our tightly-coupled formulation, enables relocalization with minimum computation overhead. We additionally perform four degrees-of-freedom pose graph optimization to enforce global consistency. We validate the performance of our system on public datasets and real-world experiments and compare against other state-of-the-art algorithms. We also perform onboard closed-loop autonomous flight on the MAV platform and port the algorithm to an iOS-based demonstration. We highlight that the proposed work is a reliable, complete, and versatile system that is applicable for different applications that require high accuracy localization. We open source our implementations for both PCs 1 and iOS mobile devices 2 .
translated by 谷歌翻译
在本文中,我们提出了一个紧密耦合的视觉惯性对象级多效性动态大满贯系统。即使在极其动态的场景中,它也可以为摄像机姿势,速度,IMU偏见并构建一个密集的3D重建对象级映射图。我们的系统可以通过稳健的传感器和对象跟踪,可以强牢固地跟踪和重建任意对象的几何形状,其语义和运动的几何形状,其语义和运动的几何形状,并通过逐步融合相关的颜色,深度,语义和前景对象概率概率。此外,当对象在视野视野外丢失或移动时,我们的系统可以在重新观察时可靠地恢复其姿势。我们通过定量和定性测试现实世界数据序列来证明我们方法的鲁棒性和准确性。
translated by 谷歌翻译
通过实现复杂场景实现长期漂移相机姿势估计的目标,我们提出了一种全球定位框架,融合了多层的视觉,惯性和全球导航卫星系统(GNSS)测量。不同于以前的松散和紧密耦合的方法,所提出的多层融合允许我们彻底校正视觉测量仪的漂移,并在GNSS降解时保持可靠的定位。特别地,通过融合GNSS的速度,在紧紧地集成的情况下,解决视觉测量测量测量测量率和偏差估计中的尺度漂移和偏差估计的问题的问题,惯性测量单元(IMU)的预集成以及紧密相机测量的情况下 - 耦合的方式。在外层中实现全局定位,其中局部运动进一步与GNSS位置和基于长期时期的过程以松散耦合的方式融合。此外,提出了一种专用的初始化方法,以保证所有状态变量和参数的快速准确估计。我们为室内和室外公共数据集提供了拟议框架的详尽测试。平均本地化误差减少了63%,而初始化精度与最先进的工程相比,促销率为69%。我们已将算法应用于增强现实(AR)导航,人群采购高精度地图更新等大型应用。
translated by 谷歌翻译
同时定位和映射(SLAM)对于自主机器人(例如自动驾驶汽车,自动无人机),3D映射系统和AR/VR应用至关重要。这项工作提出了一个新颖的LIDAR惯性 - 视觉融合框架,称为R $^3 $ LIVE ++,以实现强大而准确的状态估计,同时可以随时重建光线体图。 R $^3 $ LIVE ++由LIDAR惯性探针(LIO)和视觉惯性探测器(VIO)组成,均为实时运行。 LIO子系统利用从激光雷达的测量值重建几何结构(即3D点的位置),而VIO子系统同时从输入图像中同时恢复了几何结构的辐射信息。 r $^3 $ live ++是基于r $^3 $ live开发的,并通过考虑相机光度校准(例如,非线性响应功能和镜头渐滴)和相机的在线估计,进一步提高了本地化和映射的准确性和映射接触时间。我们对公共和私人数据集进行了更广泛的实验,以将我们提出的系统与其他最先进的SLAM系统进行比较。定量和定性结果表明,我们所提出的系统在准确性和鲁棒性方面对其他系统具有显着改善。此外,为了证明我们的工作的可扩展性,{我们基于重建的辐射图开发了多个应用程序,例如高动态范围(HDR)成像,虚拟环境探索和3D视频游戏。}最后,分享我们的发现和我们的发现和为社区做出贡献,我们在GitHub上公开提供代码,硬件设计和数据集:github.com/hku-mars/r3live
translated by 谷歌翻译
随着线提供额外的约束,利用线特征可以有助于提高基于点的单眼视觉惯性内径(VIO)系统的定位精度。此外,在人工环境中,一些直线彼此平行。在本文中,我们设计了一种基于点和直线的VIO系统,它将直线分成结构直线(即彼此平行的直线)和非结构直线。另外,与使用四个参数表示3D直线的正交表示不同,我们仅使用两个参数来最小化结构直线和非结构直线的表示。此外,我们设计了一种基于采样点的直线匹配策略,提高了直线匹配的效率和成功率。我们的方法的有效性在EUROC和TUM VI基准的公共数据集上验证,与其他最先进的算法相比。
translated by 谷歌翻译
尽管密集的视觉大满贯方法能够估计环境的密集重建,但它们的跟踪步骤缺乏稳健性,尤其是当优化初始化较差时。稀疏的视觉大满贯系统通过将惯性测量包括在紧密耦合的融合中,达到了高度的准确性和鲁棒性。受这一表演的启发,我们提出了第一个紧密耦合的密集RGB-D惯性大满贯系统。我们的系统在GPU上运行时具有实时功能。它共同优化了相机姿势,速度,IMU偏见和重力方向,同时建立了全球一致,完全密集的基于表面的3D重建环境。通过一系列关于合成和现实世界数据集的实验,我们表明我们密集的视觉惯性大满贯系统对于低纹理和低几何变化的快速运动和时期比仅相关的RGB-D仅相关的SLAM系统更强大。
translated by 谷歌翻译
我们提出了一种准确而坚固的多模态传感器融合框架,Metroloc,朝着最极端的场景之一,大规模地铁车辆本地化和映射。 Metroloc在以IMU为中心的状态估计器上构建,以较轻耦合的方法紧密地耦合光检测和测距(LIDAR),视觉和惯性信息。所提出的框架由三个子模块组成:IMU Odometry,LiDar - 惯性内径术(LIO)和视觉惯性内径(VIO)。 IMU被视为主要传感器,从LIO和VIO实现了从LIO和VIO的观察,以限制加速度计和陀螺仪偏差。与以前的点LIO方法相比,我们的方法通过将线路和平面特征引入运动估计来利用更多几何信息。 VIO还通过使用两条线和点来利用环境结构信息。我们所提出的方法在具有维护车辆的长期地铁环境中广泛测试。实验结果表明,该系统比使用实时性能的最先进的方法更准确和强大。此外,我们开发了一系列虚拟现实(VR)应用,以实现高效,经济,互动的轨道车辆状态和轨道基础设施监控,已经部署到室外测试铁路。
translated by 谷歌翻译
在不同情况下,已经探索了相对旋转和翻译估计任务的最小解决方案,通常依赖于所谓的共同可见度图。但是,如何在没有重叠的两个框架之间建立直接旋转关系仍然是一个公开主题,如果解决了,它可以大大提高视觉尾声的准确性。在本文中,提出了一种新的最小解决方案,以通过利用新的图形结构来求解两个图像之间没有重叠区域的相对旋转估计,我们将其称为扩展性图(E-Graph)。与共同可见度图不同,高级标志(包括消失方向和平面正常)存储在我们的电子图纸中,这些图形在几何上可扩展。基于电子图表,旋转估计问题变得更简单,更优雅,因为它可以处理纯粹的旋转运动,并且需要更少的假设,例如曼哈顿/亚特兰大世界,平面/垂直运动。最后,我们将旋转估计策略嵌入完整的相机跟踪和映射系统中,该系统获得了6-DOF相机姿势和密集的3D网格模型。对公共基准测试的广泛实验表明,所提出的方法实现了最新的跟踪性能。
translated by 谷歌翻译
a) Stereo input: trajectory and sparse reconstruction of an urban environment with multiple loop closures. (b) RGB-D input: keyframes and dense pointcloud of a room scene with one loop closure. The pointcloud is rendered by backprojecting the sensor depth maps from estimated keyframe poses. No fusion is performed.
translated by 谷歌翻译
我们在本文中介绍Raillomer,实现实时准确和鲁棒的内径测量和轨道车辆的测绘。 Raillomer从两个Lidars,IMU,火车车程和全球导航卫星系统(GNSS)接收器接收测量。作为前端,来自IMU / Royomer缩放组的估计动作De-Skews DeSoised Point云并为框架到框架激光轨道测量产生初始猜测。作为后端,配制了基于滑动窗口的因子图以共同优化多模态信息。另外,我们利用来自提取的轨道轨道和结构外观描述符的平面约束,以进一步改善对重复结构的系统鲁棒性。为了确保全局常见和更少的模糊映射结果,我们开发了一种两级映射方法,首先以本地刻度执行扫描到地图,然后利用GNSS信息来注册模块。该方法在聚集的数据集上广泛评估了多次范围内的数据集,并且表明Raillomer即使在大或退化的环境中也能提供排入量级定位精度。我们还将Raillomer集成到互动列车状态和铁路监控系统原型设计中,已经部署到实验货量交通铁路。
translated by 谷歌翻译
在本文中,我们评估了八种流行和开源的3D激光雷达和视觉大满贯(同时定位和映射)算法,即壤土,乐高壤土,lio sam,hdl graph,orb slam3,basalt vio和svo2。我们已经设计了室内和室外的实验,以研究以下项目的影响:i)传感器安装位置的影响,ii)地形类型和振动的影响,iii)运动的影响(线性和角速速度的变化)。我们根据相对和绝对姿势误差比较它们的性能。我们还提供了他们所需的计算资源的比较。我们通过我们的多摄像机和多大摄像机室内和室外数据集进行彻底分析和讨论结果,并确定环境案例的最佳性能系统。我们希望我们的发现可以帮助人们根据目标环境选择一个适合其需求的传感器和相应的SLAM算法组合。
translated by 谷歌翻译
农业行业不断寻求农业生产中涉及的不同过程的自动化,例如播种,收获和杂草控制。使用移动自主机器人执行这些任务引起了极大的兴趣。耕地面向同时定位和映射(SLAM)系统(移动机器人技术的关键)面临着艰巨的挑战,这是由于视觉上的难度,这是由于高度重复的场景而引起的。近年来,已经开发了几种视觉惯性遗传(VIO)和SLAM系统。事实证明,它们在室内和室外城市环境中具有很高的准确性。但是,在农业领域未正确评估它们。在这项工作中,我们从可耕地上的准确性和处理时间方面评估了最相关的最新VIO系统,以便更好地了解它们在这些环境中的行为。特别是,该评估是在我们的车轮机器人记录的大豆领域记录的传感器数据集中进行的,该田间被公开发行为Rosario数据集。评估表明,环境的高度重复性外观,崎terrain的地形产生的强振动以及由风引起的叶子的运动,暴露了当前最新的VIO和SLAM系统的局限性。我们分析了系统故障并突出观察到的缺点,包括初始化故障,跟踪损失和对IMU饱和的敏感性。最后,我们得出的结论是,即使某些系统(例如Orb-Slam3和S-MSCKF)在其他系统方面表现出良好的结果,但应采取更多改进,以使其在某些申请中的农业领域可靠,例如作物行的土壤耕作和农药喷涂。 。
translated by 谷歌翻译
现代视觉惯性导航系统(VINS)面临着实际部署中的一个关键挑战:他们需要在高度动态的环境中可靠且强大地运行。当前最佳解决方案仅根据对象类别的语义将动态对象过滤为异常值。这样的方法不缩放,因为它需要语义分类器来包含所有可能移动的对象类;这很难定义,更不用说部署。另一方面,许多现实世界的环境以墙壁和地面等平面形式表现出强大的结构规律,这也是至关重要的。我们呈现RP-VIO,一种单眼视觉惯性内径系统,可以利用这些平面的简单几何形状,以改善充满活力环境的鲁棒性和准确性。由于现有数据集具有有限数量的动态元素,因此我们还提供了一种高动态的光致态度合成数据集,用于更有效地对现代VINS系统的功能的评估。我们评估我们在该数据集中的方法,以及来自标准数据集的三个不同序列,包括两个真实的动态序列,并在最先进的单眼视觉惯性内径系统上显示出鲁棒性和准确性的显着提高。我们还显示在模拟中,通过简单的动态特征掩蔽方法改进。我们的代码和数据集是公开可用的。
translated by 谷歌翻译
在本文中,我们介绍了全球导航卫星系统(GNSS)辅助激光乐队 - 视觉惯性方案RAILTOMER-V,用于准确且坚固的铁路车辆本地化和映射。 Raillomer-V在因子图上制定,由两个子系统组成:辅助LiDar惯性系统(OLIS)和距离的内径综合视觉惯性系统(OVI)。两个子系统都利用了铁路上的典型几何结构。提取的轨道轨道的平面约束用于补充OLI中的旋转和垂直误差。此外,线特征和消失点被利用以限制卵巢中的旋转漂移。拟议的框架在800公里的数据集中广泛评估,聚集在一年以上的一般速度和高速铁路,日夜。利用各个传感器的所有测量的紧密耦合集成,我们的框架准确到了长期的任务,并且足够强大地避免了退行的情景(铁路隧道)。此外,可以使用车载计算机实现实时性能。
translated by 谷歌翻译
尽管数十年来,同时定位和映射(SLAM)一直是一个积极的研究主题,但由于特征不足或其固有的估计漂移,在许多平民环境中,当前的最新方法仍然遭受不稳定或不准确性的困扰。为了解决这些问题,我们提出了一个梳理SLAM和先前基于图的本地化的导航系统。具体而言,我们考虑了线条和平面特征的其他集成,这些特征在平民环境中无处不在,在结构上更突出,以确保功能充足和本地化的鲁棒性。更重要的是,我们将一般的先验地图信息纳入SLAM以限制其漂移并提高准确性。为了避免在先前的信息和局部观察之间进行严格的关联,我们将先验知识的参数化为低维结构先验,定义为不同几何原始原始人之间的相对距离/角度。本地化被公式化为基于图的优化问题,其中包含基于滑动窗口的变量和因素,包括IMU,异质特征和结构先验。我们还得出了不同因素的雅各布人的分析表达式,以避免自动分化开销。为了进一步减轻结合结构先验因素的计算负担,根据所谓的信息增益采用了选择机制,以仅将最有效的结构先验纳入图表优化中。最后,对综合数据,公共数据集以及更重要的是,对所提出的框架进行了广泛的测试。结果表明,所提出的方案可以有效地提高平民应用中自动驾驶机器人的本地化的准确性和鲁棒性。
translated by 谷歌翻译
视觉惯性化学测定法吸引了自主驾驶和机器人技术领域的广泛关注。视场(FOV)的大小在视觉播音(VO)和视觉惯性二次测量法(VO)中起着重要作用,作为大型FOV,可以感知各种周围的场景元素和特征。但是,当摄像机的字段到达负半平面时,就不能简单地使用[u,v,1]^t来表示图像特征点。为了解决这个问题,我们建议LF-VIO,这是一个具有极大FOV的相机的实时VIO框架。我们利用具有单位长度的三维矢量来表示特征点,并设计一系列算法来克服这一挑战。为了解决带有地位的位置和姿势的全景视觉探针数据集的稀缺性,我们介绍了Palvio数据集,该数据集用具有360 {\ deg} x的整个FOV的全景环形镜头(PAL)系统收集(40 {\ deg}) -120 {\ deg})和IMU传感器。有了全面的实验,在已建立的Palvio基准和公共Fisheye摄像机数据集上验证了建议的LF-VIO,其FOV为360 {\ deg} x(0 {\ deg} -93.5 {\ deg})。 LF-VIO优于最先进的视觉惯性 - 调节法。我们的数据集和代码可在https://github.com/flysoaryun/lf-vio上公开提供。
translated by 谷歌翻译
束调整(BA)是指同时确定传感器姿势和场景几何形状的问题,这是机器人视觉中的一个基本问题。本文为LIDAR传感器提供了一种有效且一致的捆绑捆绑调整方法。该方法采用边缘和平面特征来表示场景几何形状,并直接最大程度地减少从每个原始点到各自几何特征的天然欧几里得距离。该公式的一个不错的属性是几何特征可以在分析上解决,从而大大降低了数值优化的维度。为了更有效地表示和解决最终的优化问题,本文提出了一个新颖的概念{\ it point clusters},该概念编码了通过一组紧凑的参数集与同一特征相关联的所有原始点,{\ it点群集坐标} 。我们根据点簇坐标得出BA优化的封闭形式的衍生物,并显示其理论属性,例如零空间和稀疏性。基于这些理论结果,本文开发了有效的二阶BA求解器。除了估计LiDAR姿势外,求解器还利用二阶信息来估计测量噪声引起的姿势不确定性,从而导致对LIDAR姿势的一致估计。此外,由于使用点群集的使用,开发的求解器从根本上避免了在优化的所有步骤中列出每个原始点(由于数量大量而非常耗时):成本评估,衍生品评估和不确定性评估。我们的方法的实施是开源的,以使机器人界及其他地区受益。
translated by 谷歌翻译
由于其对环境变化的鲁棒性,视觉猛感的间接方法是受欢迎的。 ORB-SLAM2 \ CITE {ORBSLM2}是该域中的基准方法,但是,除非选择帧作为关键帧,否则它会消耗从未被重用的描述符。轻量级和高效,因为它跟踪相邻帧之间的关键点而不计算描述符。为此,基于稀疏光流提出了一种两个级粗到微小描述符独立的Keypoint匹配方法。在第一阶段,我们通过简单但有效的运动模型预测初始关键点对应,然后通过基于金字塔的稀疏光流跟踪鲁棒地建立了对应关系。在第二阶段,我们利用运动平滑度和末端几何形状的约束来改进对应关系。特别是,我们的方法仅计算关键帧的描述符。我们在\ texit {tum}和\ texit {icl-nuim} RGB-D数据集上测试Fastorb-Slam,并将其准确性和效率与九种现有的RGB-D SLAM方法进行比较。定性和定量结果表明,我们的方法实现了最先进的准确性,并且大约是ORB-SLAM2的两倍。
translated by 谷歌翻译