自然语言数据表现出类似的树形层次结构,例如Wordnet中的复义 - 虚幻关系。FastText,作为基于欧几里德空间中的浅神经网络的最先进的文本分类器,可能无法精确地模拟这些层次结构,这些层次结构具有有限的表示容量。考虑到双曲线空间自然适合建模树状分层数据,我们提出了一个名为超文本的新模型,以通过赋予双曲线几何来赋予快速文本的高效文本分类。凭经验,我们显示超文本优于一系列文本分类任务的快速文本,参数大大减少。
translated by 谷歌翻译
跨语言嵌入可以应用于多种语言的几种自然语言处理应用程序。与先前使用基于欧几里得空间嵌入单词嵌入的作品不同,这篇简短的论文提出了一种简单有效的跨语言2VEC模型,该模型适应了PoinCar \'E Ball of双曲空间的球模型,从 - 英语平行语料库。已经表明,双曲线嵌入可以捕获和保留分层关系。我们在高呼气和类比任务上评估了模型。所提出的模型在跨语言类比任务上与香草word2Vec模型实现了可比的性能,超呼气任务表明,跨语义的poincar \'e Word2vec模型可以从跨语言中捕获潜在的层次结构,而这些文本跨越跨语言,这些结构是从跨语言中捕获的基于欧几里得的Word2Vec表示。我们的结果表明,通过保留潜在的分层信息,双曲线空间可以为跨语性嵌入提供更好的表示。
translated by 谷歌翻译
由于其几何特性,双曲线空间可以支持树木和图形结构化数据的高保真嵌入。结果,已经开发了各种双曲线网络,这些网络在许多任务上都超过了欧几里得网络:例如双曲线图卷积网络(GCN)在某些图形学习任务上的表现可以胜过香草GCN。但是,大多数现有的双曲线网络都是复杂的,计算昂贵的,并且在数值上不稳定 - 由于这些缺点,它们无法扩展到大图。提出了越来越多的双曲线网络,越来越不清楚什么关键组成部分使模型行为。在本文中,我们提出了HYLA,这是一种简单而最小的方法,用于在网络中使用双曲线空间:Hyla地图一次从双曲空空间从嵌入荷兰的嵌入到欧几里得空间,并通过双曲线空间中的Laplacian操作员的特征函数。我们在图形学习任务上评估HYLA,包括节点分类和文本分类,其中HYLA可以与任何图神经网络一起使用。当与线性模型一起使用时,HYLA对双曲线网络和其他基线显示出显着改善。
translated by 谷歌翻译
The choice of geometric space for knowledge graph (KG) embeddings can have significant effects on the performance of KG completion tasks. The hyperbolic geometry has been shown to capture the hierarchical patterns due to its tree-like metrics, which addressed the limitations of the Euclidean embedding models. Recent explorations of the complex hyperbolic geometry further improved the hyperbolic embeddings for capturing a variety of hierarchical structures. However, the performance of the hyperbolic KG embedding models for non-transitive relations is still unpromising, while the complex hyperbolic embeddings do not deal with multi-relations. This paper aims to utilize the representation capacity of the complex hyperbolic geometry in multi-relational KG embeddings. To apply the geometric transformations which account for different relations and the attention mechanism in the complex hyperbolic space, we propose to use the fast Fourier transform (FFT) as the conversion between the real and complex hyperbolic space. Constructing the attention-based transformations in the complex space is very challenging, while the proposed Fourier transform-based complex hyperbolic approaches provide a simple and effective solution. Experimental results show that our methods outperform the baselines, including the Euclidean and the real hyperbolic embedding models.
translated by 谷歌翻译
双曲线空间可以连续嵌入分层结构。双曲神经网络(HNNS)通过将欧几里德特征提升到用于分类的双曲线空间来利用这种代表性,优于具有已知分层结构的数据集上的欧几里德神经网络(ENNS)。但是,HNNS低于标准基准测试,具有不明确的层次结构,极大地限制了HNNS的实际适用性。我们的主要洞察力是,由于将欧几里德特征连接到双曲线分类器的混合架构引起,HNNS对渐变较差的较差的普通分类性能。我们通过简单地在训练HNN时简单地剪切欧几里德特征幅度来提出有效的解决方案。我们的实验结果表明,剪辑的HNNS成为超级双曲分类器:它们不仅始终如一地优于位于分层数据上的HNN,而且在MNIST,CIFAR10,CIFAR100和ImageNet基准上与ENN一起举行,具有更好的对抗鲁棒性和分销外检测。
translated by 谷歌翻译
3D对象的点云具有固有的组成性质,可以将简单的部分组装成逐渐复杂的形状以形成整个对象。明确捕获这种部分整体层次结构是一个长期的目标,以建立有效的模型,但其树状的性质使这项任务变得难以捉摸。在本文中,我们建议将点云分类器的特征嵌入双曲线空间中,并明确规范空间以说明零件整体结构。双曲线空间是唯一可以成功嵌入层次结构的树状性质的空间。这导致了对点云分类的最先进的监督模型的性能的实质性改善。
translated by 谷歌翻译
A new development in NLP is the construction of hyperbolic word embeddings. As opposed to their Euclidean counterparts, hyperbolic embeddings are represented not by vectors, but by points in hyperbolic space. This makes the most common basic scheme for constructing document representations, namely the averaging of word vectors, meaningless in the hyperbolic setting. We reinterpret the vector mean as the centroid of the points represented by the vectors, and investigate various hyperbolic centroid schemes and their effectiveness at text classification.
translated by 谷歌翻译
知识图(kg)嵌入在实体的学习表示和链接预测任务的关系方面表现出很大的力量。以前的工作通常将KG嵌入到单个几何空间中,例如欧几里得空间(零弯曲),双曲空间(负弯曲)或超透明空间(积极弯曲),以维持其特定的几何结构(例如,链,层次结构和环形结构)。但是,KGS的拓扑结构似乎很复杂,因为它可能同时包含多种类型的几何结构。因此,将kg嵌入单个空间中,无论欧几里得空间,双曲线空间或透明空间,都无法准确捕获KGS的复杂结构。为了克服这一挑战,我们提出了几何相互作用知识图嵌入(GIE),该图形嵌入了,该图形在欧几里得,双曲线和超级空间之间进行了交互学习的空间结构。从理论上讲,我们提出的GIE可以捕获一组更丰富的关系信息,模型键推理模式,并启用跨实体的表达语义匹配。三个完善的知识图完成基准的实验结果表明,我们的GIE以更少的参数实现了最先进的性能。
translated by 谷歌翻译
从有限的例子中学习和推广,我,e,几次拍摄的学习,对许多真实世界视觉应用的核心重要性是核心重要性。实现少量学习的主要方法是实现来自不同类别的样本是独特的嵌入的嵌入。最近的研究表明,通过双曲线几何嵌入较低的分层和结构化数据,使其适合几次拍摄的学习。在本文中,我们建议学习上下文知识的双曲标准,以表征与学习集合的点与设置距离相关联的点之间的距离。为此,我们将度量标准作为双曲线空间的切线束上的加权总和,并制定自适应地并基于点的星座获得重量的机制。这不仅使得公制本地,而且依赖于手头的任务,这意味着度量根据它比较的样本。我们经验证明,这种度量在异常值存在下产生鲁棒性,并实现基线模型的切实改善。这包括五个流行的少量分类基准,即迷你想象,分层 - 想象成,CALTECH-UCSD鸟-200-2011(幼崽),CIFAR-FS和FC100的最先进的结果。
translated by 谷歌翻译
双曲线空间可以嵌入树度量,其失真几乎没有失真,是用于建模实际数据和语义的层次结构的理想性质。虽然高维嵌入式通常会导致更好的表示,但由于非琐碎的优化以及高维双曲数据缺乏可视化,大多数双曲模型利用低维嵌入式。我们提出了CO-SNE,将欧几里德空间可视化工具T-SNE延伸到双曲线空间。像T-SNE一样,它将数据点之间的距离转换为联合概率,并尝试最小化高维数据的联合概率之间的kullback-leibler分歧$ x $和低维嵌入$ y $。然而,与欧几里德空间不同,双曲线空间不均匀:体积可能在远离原点的位置包含更多点。因此,CO-SNE为$ x $和hyberbolic \ Underline {c} auchy而不是t-sne的学生的t分布,而不是$ y $,它还试图将$ x $的单个距离保存到\下划线{o} RIGIN $ Y $。我们将Co-SNE施加到高维双曲生物数据以及无监督的双曲线表现。我们的结果表明,CO-SNE将高维色双曲数据降低到低维空间,而不会失去双曲线特性,显着优于PCA,T-SNE,UMAP和HOROPCA等流行可视化工具,其最后一个专门设计用于双曲数据。
translated by 谷歌翻译
双曲线空间已成为从树状结构和文本到图表的各种数据类型的歧管的流行选择。建立在欧几里德和超球空间的型原型的深度学习成功,最近的一些作品已经提出了用于分类的双曲线原型。这种方法能够在低维输出空间中实现有效的学习,并且可以利用类之间的分层关系,但需要有关类标签的特权信息来定位双曲型原型。在这项工作中,我们提出了双曲线的Busemann学习。我们的方法背后的主要思想是将原型定位在Poincar \ E球的理想边界上,这不需要先前的标签知识。为了能够计算邻近的理想原型,我们介绍了受到惩罚的Busemann损失。我们提供了支持使用理想原型和建议损失的理论,通过证明其在一维案件中的物流回归。凭经验,我们表明我们的方法提供了对分类信心的自然解释,而最近的最近的超球和双曲线原型方法。
translated by 谷歌翻译
最近,对时间变化的知识图或时间知识图(TKG)的学术兴趣越来越高。先前的研究表明,使用历史信息的TKG推理的多种方法。但是,在不同时间戳上此类信息中对层次结构的关注较少。鉴于TKG是基于时间的一系列知识图,因此序列中的年代学衍生了图之间的层次结构。此外,每个知识图都有其层次结构级别,可能相互不同。为了解决TKG中的这些层次结构特征,我们提出了HyperVC,它利用比欧几里得空间更好地编码层次结构的双曲线空间。不同时间戳上知识图之间的时间顺序结构是通过将知识图作为矢量嵌入通用双曲线空间中的矢量来表示的。此外,通过调整其实体和关系的双曲线嵌入的曲率来表示,知识图的各种层次级别。四个基准数据集的实验显示出很大的改进,尤其是在层次级别较高的数据集上。
translated by 谷歌翻译
嵌入现实世界网络提出挑战,因为它不清楚如何识别其潜在的几何形状。嵌入了诸如无尺度网络的辅音网络,以欧几里德空间显示出造成的扭曲。将无缝的网络嵌入到双曲线空间提供令人兴奋的替代方案,但在将各种网络与潜在几何图中嵌入不同的几何形状时,扭曲的障碍。我们提出了一种归纳模型,可以利用GCNS和琐碎束的表现力来学习有或没有节点特征的网络的归纳节点表示。琐碎的束是一种简单的纤维束的情况,这是全球的空间,其基础空间和光纤的产品空间。基础空间和纤维的坐标可用于表达产生边缘的分类和抵消因子。因此,该模型能够学习可以表达这些因素的嵌入物。在实践中,与Euclidean和双曲线GCN相比,它会减少链路预测和节点分类的错误。
translated by 谷歌翻译
实际上,许多医疗数据集在疾病标签空间上定义了基本的分类学。但是,现有的医学诊断分类算法通常假定具有语义独立的标签。在这项研究中,我们旨在利用深度学习算法来利用类层次结构,以更准确,可靠的皮肤病变识别。我们提出了一个双曲线网络,以共同学习图像嵌入和类原型。事实证明,双曲线为与欧几里得几何形状更好地建模层次关系提供了一个空间。同时,我们使用从类层次结构编码的距离矩阵限制双曲线原型的分布。因此,学习的原型保留了嵌入空间中的语义类关系,我们可以通过将图像特征分配给最近的双曲线类原型来预测图像的标签。我们使用内部皮肤病变数据集,该数据集由65种皮肤疾病的大约230k皮肤镜图像组成,以验证我们的方法。广泛的实验提供了证据表明,与模型相比,我们的模型可以实现更高的准确性,而在不考虑班级关系的情况下可以实现更高的严重分类错误。
translated by 谷歌翻译
双曲线神经网络由于对几个图形问题的有希望的结果,包括节点分类和链接预测,因此最近引起了极大的关注。取得成功的主要原因是双曲空间在捕获图数据集的固有层次结构方面的有效性。但是,在非层次数据集方面,它们在概括,可伸缩性方面受到限制。在本文中,我们对双曲线网络进行了完全正交的观点。我们使用Poincar \'e磁盘对双曲线几何形状进行建模,并将其视为磁盘本身是原始的切线空间。这使我们能够用欧几里院近似替代非尺度的M \“ Obius Gyrovector操作,因此将整个双曲线模型简化为具有双曲线归一化功能的欧几里得模型。它仍然在Riemannian歧管中起作用,因此我们称其为伪poincar \'e框架。我们将非线性双曲线归一化应用于当前的最新均质和多关系图网络,与欧几里得和双曲线对应物相比,性能的显着改善。这项工作的主要影响在于其在欧几里得空间中捕获层次特征的能力,因此可以替代双曲线网络而不会损失性能指标,同时利用欧几里得网络的功能,例如可解释性和有效执行各种模型组件。
translated by 谷歌翻译
Hyperbolic space is emerging as a promising learning space for representation learning, owning to its exponential growth volume. Compared with the flat Euclidean space, the curved hyperbolic space is far more ambient and embeddable, particularly for datasets with implicit tree-like architectures, such as hierarchies and power-law distributions. On the other hand, the structure of a real-world network is usually intricate, with some regions being tree-like, some being flat, and others being circular. Directly embedding heterogeneous structural networks into a homogeneous embedding space unavoidably brings inductive biases and distortions. Inspiringly, the discrete curvature can well describe the local structure of a node and its surroundings, which motivates us to investigate the information conveyed by the network topology explicitly in improving geometric learning. To this end, we explore the properties of the local discrete curvature of graph topology and the continuous global curvature of embedding space. Besides, a Hyperbolic Curvature-aware Graph Neural Network, HCGNN, is further proposed. In particular, HCGNN utilizes the discrete curvature to lead message passing of the surroundings and adaptively adjust the continuous curvature simultaneously. Extensive experiments on node classification and link prediction tasks show that the proposed method outperforms various competitive models by a large margin in both high and low hyperbolic graph data. Case studies further illustrate the efficacy of discrete curvature in finding local clusters and alleviating the distortion caused by hyperbolic geometry.
translated by 谷歌翻译
In recent years, graph neural networks (GNNs) have emerged as a promising tool for solving machine learning problems on graphs. Most GNNs are members of the family of message passing neural networks (MPNNs). There is a close connection between these models and the Weisfeiler-Leman (WL) test of isomorphism, an algorithm that can successfully test isomorphism for a broad class of graphs. Recently, much research has focused on measuring the expressive power of GNNs. For instance, it has been shown that standard MPNNs are at most as powerful as WL in terms of distinguishing non-isomorphic graphs. However, these studies have largely ignored the distances between the representations of nodes/graphs which are of paramount importance for learning tasks. In this paper, we define a distance function between nodes which is based on the hierarchy produced by the WL algorithm, and propose a model that learns representations which preserve those distances between nodes. Since the emerging hierarchy corresponds to a tree, to learn these representations, we capitalize on recent advances in the field of hyperbolic neural networks. We empirically evaluate the proposed model on standard node and graph classification datasets where it achieves competitive performance with state-of-the-art models.
translated by 谷歌翻译
Graph convolutional networks (GCNs) are powerful frameworks for learning embeddings of graph-structured data. GCNs are traditionally studied through the lens of Euclidean geometry. Recent works find that non-Euclidean Riemannian manifolds provide specific inductive biases for embedding hierarchical or spherical data. However, they cannot align well with data of mixed graph topologies. We consider a larger class of pseudo-Riemannian manifolds that generalize hyperboloid and sphere. We develop new geodesic tools that allow for extending neural network operations into geodesically disconnected pseudo-Riemannian manifolds. As a consequence, we derive a pseudo-Riemannian GCN that models data in pseudo-Riemannian manifolds of constant nonzero curvature in the context of graph neural networks. Our method provides a geometric inductive bias that is sufficiently flexible to model mixed heterogeneous topologies like hierarchical graphs with cycles. We demonstrate the representational capabilities of this method by applying it to the tasks of graph reconstruction, node classification and link prediction on a series of standard graphs with mixed topologies. Empirical results demonstrate that our method outperforms Riemannian counterparts when embedding graphs of complex topologies.
translated by 谷歌翻译
\ emph {black-box}模型的说明有助于我们了解模型决策,并提供有关模型偏见和不一致之处的信息。当前的大多数解释性技术通常就特征重要性得分或输入空间中的特征注意图提供了单一的解释。我们的重点是从细粒度到完全抽象的解释中解释\ emph {多个级别的抽象}处的深层歧视模型。我们通过使用\ emph {双曲几何}的自然特性来更有效地对符号特征的层次结构进行建模,并生成\ emph {层次结构符号规则}作为解释的一部分。具体而言,对于任何给定的深层歧视模型,我们通过使用矢量定量对连续的潜在空间的离散化来提炼基础知识,以形成符号,然后是\ emph {双曲线推理块},以诱导\ emph {抽象{抽象树}。我们遍历树以根据符号规则及其相应的视觉语义提取解释。我们证明了我们方法对MNIST和AFHQ高分辨率动物面孔数据集的有效性。我们的框架可在\ url {https://github.com/koriavinash1/symbolicinterpretability}中获得。
translated by 谷歌翻译
图表表示学习近年来收到了增加的注意。大多数现有方法忽略了图形结构的复杂性,并限制了单个恒定曲率表示空间中的图形,这仅适用于特定类型的图形结构。此外,这些方法遵循监督或半监督的学习范例,从而显着限制其在实际应用中的未标记图中的部署。为了解决这些上述限制,我们首次尝试研究混合曲率空间中的自我监督的图表表示学习。在本文中,我们提出了一种新颖的自我监督的混合曲率图神经网络(SelfMGNN)。我们不是在一个单一的恒定曲率空间上工作,我们通过多个riemannian组件空间的笛卡尔乘积构建混合曲率空间,并设计分层注意机制,用于学习和融合这些组件空间的表示。为了实现自我超标学习,我们提出了一种新的双重对比方法。混合曲率的黎曼空间实际上为对比学习提供了多个黎曼观点。我们介绍了一个riemananian投影机来揭示这些观点,并利用精心设计的riemananian判别者,以便在里莫安尼亚视图中单独和跨越对比学习。最后,广泛的实验表明SelfMGNN捕获了现实中的复杂图形结构,优于最先进的基线。
translated by 谷歌翻译