在本文中,我们提出了一个混合神经网络增强基于物理的建模(APBM)框架,用于贝叶斯非线性潜在空间估计。提出的APBM策略允许在新的操作条件发挥作用时进行模型适应,或者基于物理的模型不足(或不完整)无法正确描述潜在现象。APBM的优点和我们的估计程序是维持估计状态的物理解释性的能力。此外,我们提出了一种约束过滤方法,以控制对整个模型的神经网络贡献。我们还利用假定的密度滤波技术和立方体集成规则,以提出灵活的估计策略,该策略可以轻松处理非线性模型和高维度的潜在空间。最后,我们通过分别利用非线性和不完整的测量和加速模型来利用目标跟踪方案来证明我们的方法论的功效。
translated by 谷歌翻译
准确的动力学模型在许多机器人技术应用程序(例如越野导航和高速驾驶)中起着至关重要的作用。然而,学习随机运动动力学模型的许多最先进的方法需要对机器人状态作为标记的输入/输出示例进行精确测量,由于传感器功能有限,并且缺乏地面真相,在室外设置中可能很难获得。 。在这项工作中,我们提出了一种新技术,用于通过执行同时进行状态估计和动力学学习,从嘈杂和间接观察中学习神经随机的动力学模型。所提出的技术迭代地改善了预期最大化环路中的动力学模型,其中E步骤采样了使用粒子过滤的后状态轨迹,并且M步骤更新动力学,以使通过随机梯度上升的采样轨迹更加一致。我们在模拟和实际基准测试中评估了我们的方法,并将其与几种基线技术进行比较。我们的方法不仅达到了更高的精度,而且对观察噪声也更加强大,从而显示出有望提高许多其他机器人应用的性能。
translated by 谷歌翻译
在本文中,我们提出了一种基于模型的增强学习(MBRL)算法,称为\ emph {Monte Carlo概率的学习控制}(MC-PILCO)。该算法依赖于高斯流程(GPS)来对系统动力学进行建模以及蒙特卡洛方法以估计策略梯度。这定义了一个框架,在该框架中,我们可以在其中选择以下组件的选择:(i)成本函数的选择,(ii)使用辍学的策略优化,(iii)通过在使用中的结构内核来提高数据效率GP型号。上述方面的组合会极大地影响MC-PILCO的性能。在模拟卡车杆环境中的数值比较表明,MC-PILCO具有更好的数据效率和控制性能W.R.T.最先进的基于GP的MBRL算法。最后,我们将MC-PILCO应用于实际系统,考虑到具有部分可测量状态的特定系统。我们讨论了在策略优化过程中同时建模测量系统和国家估计器的重要性。已在模拟和两个真实系统(Furuta pendulum和一个球形式钻机)中测试了所提出的溶液的有效性。
translated by 谷歌翻译
非线性状态空间模型是一种强大的工具,可以在复杂时间序列中描述动态结构。在一个流的媒体设置中,当一次处理一个样本的情况下,状态的同时推断及其非线性动力学在实践中提出了重大挑战。我们开发了一个小说在线学习框架,利用变分推理和顺序蒙特卡罗,这使得灵活和准确的贝叶斯联合过滤。我们的方法提供了滤波后的近似,这可以任意地接近针对广泛的动态模型和观察模型的真正滤波分布。具体地,所提出的框架可以使用稀疏高斯过程有效地近似于动态的后验,允许潜在动力学的可解释模型。每个样本的恒定时间复杂性使我们的方法能够适用于在线学习场景,适用于实时应用。
translated by 谷歌翻译
在本文中,提出了一个基于Chebyshev多项式优化(CHEVOPT)的后时间最大估计的新框架,它提出了将非线性连续时状态估计转换为恒定参数优化的问题。具体而言,随时间变化的系统状态由Chebyshev多项式表示,未知的Chebyshev系数通过最大程度地减少先验,动力学和测量的加权总和来优化。在最小二乘意义上,提出的CHEVOPT是最佳的连续时间估计,需要进行批处理处理。还提出了递归滑动窗口版本,以满足实时应用程序的要求。与众所周知的高斯过滤器相比,Chevopt可以更好地解决动力学和测量中的非线性。指示性示例的数值结果表明,所提出的Chevopt在扩展/无情的卡尔曼过滤器和扩展的批次/固定lag更平滑的情况下,取得了明显提高的精度,闭上了cramer-rao的下限。
translated by 谷歌翻译
神经随机微分方程(NSDES)模拟随机过程作为神经网络的漂移和扩散函数。尽管已知NSDE可以进行准确的预测,但到目前为止,其不确定性定量属性仍未探索。我们报告了经验发现,即从NSDE获得良好的不确定性估计是计算上的过度估计。作为一种补救措施,我们开发了一种计算负担得起的确定性方案,该方案在动力学受NSD管辖时准确地近似过渡内核。我们的方法引入了匹配算法的二维力矩:沿着神经净层和沿时间方向水平的垂直力,这受益于有效近似的原始组合。我们对过渡内核的确定性近似适用于培训和预测。我们在多个实验中观察到,我们方法的不确定性校准质量只有在引入高计算成本后才通过蒙特卡洛采样来匹配。由于确定性培训的数值稳定性,我们的方法还提高了预测准确性。
translated by 谷歌翻译
我们确定有效的随机微分方程(SDE),用于基于精细的粒子或基于试剂的模拟的粗糙观察结果;然后,这些SDE提供了精细规模动力学的有用的粗替代模型。我们通过神经网络近似这些有效的SDE中的漂移和扩散率函数,可以将其视为有效的随机分解。损失函数的灵感来自于已建立的随机数值集成剂的结构(在这里,欧拉 - 玛鲁山和米尔斯坦);因此,我们的近似值可以受益于这些基本数值方案的向后误差分析。当近似粗的模型(例如平均场方程)可用时,它们还自然而然地适合“物理信息”的灰色盒识别。 Langevin型方程和随机部分微分方程(SPDE)的现有数值集成方案也可以用于训练;我们在随机强迫振荡器和随机波方程式上证明了这一点。我们的方法不需要长时间的轨迹,可以在散落的快照数据上工作,并且旨在自然处理每个快照的不同时间步骤。我们考虑了预先知道粗糙的集体观察物以及必须以数据驱动方式找到它们的情况。
translated by 谷歌翻译
动态系统参见在物理,生物学,化学等自然科学中广泛使用,以及电路分析,计算流体动力学和控制等工程学科。对于简单的系统,可以通过应用基本物理法来导出管理动态的微分方程。然而,对于更复杂的系统,这种方法变得非常困难。数据驱动建模是一种替代范式,可以使用真实系统的观察来了解系统的动态的近似值。近年来,对数据驱动的建模技术的兴趣增加,特别是神经网络已被证明提供了解决广泛任务的有效框架。本文提供了使用神经网络构建动态系统模型的不同方式的调查。除了基础概述外,我们还审查了相关的文献,概述了这些建模范式必须克服的数值模拟中最重要的挑战。根据审查的文献和确定的挑战,我们提供了关于有前途的研究领域的讨论。
translated by 谷歌翻译
国家估计是许多机器人应用中的重要方面。在这项工作中,我们考虑通过增强状态估计算法中使用的动力学模型来获得机器人系统的准确状态估计的任务。现有的框架,例如移动视野估计(MHE)和无气味的卡尔曼过滤器(UKF),为合并非线性动力学和测量模型提供了灵活性。但是,这意味着这些算法中的动力学模型必须足够准确,以保证状态估计的准确性。为了增强动力学模型并提高估计准确性,我们利用了一个深度学习框架,称为基于知识的神经普通微分方程(KNODES)。 KNODE框架将先验知识嵌入到训练过程中,并通过将先前的第一原理模型与神经普通微分方程(NODE)模型融合来合成精确的混合模型。在我们提出的最新框架中,我们将数据驱动的模型集成到两种基于新型模型的状态估计算法中,它们表示为Knode-Mhe和Knode-UKF。在许多机器人应用中,将这两种算法与它们的常规对应物进行了比较。使用部分测量值,地面机器人的定位以及四型二次估计的状态估计。通过使用现实世界实验数据的模拟和测试,我们证明了所提出的学习增强状态估计框架的多功能性和功效。
translated by 谷歌翻译
惯性导航系统与全球导航卫星系统之间的融合经常用于许多平台,例如无人机,陆地车辆和船舶船只。融合通常是在基于模型的扩展卡尔曼过滤框架中进行的。过滤器的关键参数之一是过程噪声协方差。它负责实时解决方案的准确性,因为它考虑了车辆动力学不确定性和惯性传感器质量。在大多数情况下,过程噪声被认为是恒定的。然而,由于整个轨迹的车辆动力学和传感器测量变化,过程噪声协方差可能会发生变化。为了应对这种情况,文献中建议了几种基于自适应的Kalman过滤器。在本文中,我们提出了一个混合模型和基于学习的自适应导航过滤器。我们依靠基于模型的Kalman滤波器和设计深神网络模型来调整瞬时系统噪声协方差矩阵,仅基于惯性传感器读数。一旦学习了过程噪声协方差,就可以将其插入建立的基于模型的Kalman滤波器中。在推导了提出的混合框架后,提出了使用四极管的现场实验结果,并给出了与基于模型的自适应方法进行比较。我们表明,所提出的方法在位置误差中获得了25%的改善。此外,提出的混合学习方法可以在任何导航过滤器以及任何相关估计问题中使用。
translated by 谷歌翻译
随机微分方程(SDE)用于描述各种复杂的随机动力学系统。学习SDE中的隐藏物理学对于揭示对这些系统的随机和非线性行为的基本理解至关重要。我们提出了一个灵活且可扩展的框架,用于训练人工神经网络,以学习代表SDE中隐藏物理的本构方程。所提出的随机物理学的神经普通微分方程框架(Spinode)通过已知的SDE结构(即已知的物理学)传播随机性,以产生一组确定性的ODE,以描述随机状态的统计矩的时间演变。然后,Spinode使用ODE求解器预测矩轨迹。 Spinode通过将预测的矩与从数据估计的矩匹配来学习隐藏物理的神经网络表示。利用了自动分化和微型批次梯度下降的最新进展,并利用了伴随灵敏度,以建立神经网络的未知参数。我们在三个基准内案例研究上展示了Spinod,并分析了框架的数值鲁棒性和稳定性。 Spinode提供了一个有希望的新方向,用于系统地阐明具有乘法噪声的多元随机动力学系统的隐藏物理。
translated by 谷歌翻译
线性卡尔曼过滤器通常用于车辆跟踪。该过滤器需要了解车辆轨迹以及系统的统计数据和测量模型。在现实生活中,确定这些模型时做出的先前假设不存在。结果,总体过滤器性能降低,在某些情况下,估计的状态分歧。为了克服{车辆运动学}轨迹建模的不确定性,可以使用其他人工过程噪声或可以使用不同类型的自适应过滤器。本文提出了基于{Model和}机器学习算法的自适应Kalman滤波器。首先,使用复发性神经网络来学习车辆的几何和运动学特征。反过来,这些功能被插入监督的学习模型,从而提供了在Kalman框架中使用的实际过程噪声协方差。使用牛津机器人数据集评估了所提出的方法并将其与其他六个自适应过滤器进行了比较。提出的框架可以在其他估计问题中实现,以准确确定实时场景中的过程噪声协方差。
translated by 谷歌翻译
本文介绍了基于机器学习的集合条件均值滤波器(ML-ACMF) - 基于先前在文献中引入的条件均值滤波器(CMF)的过滤方法。 CMF的更新平均值匹配后部的平均值,通过在过滤器的预测分布上应用贝叶斯的规则获得。此外,我们表明CMF的更新协方差与预期的条件协方差相吻合。实施ENCMF需要计算条件平均值(CM)。基于可能性的估计器容易出现小合奏尺寸的重大错误,从而导致滤波器发散。我们开发了一种系统的方法论,可以根据CM的正交投影属性将机器学习整合到ENCMF中。首先,我们使用基于集合Kalman滤波器(ENKF)获得的人工神经网络(ANN)和线性函数的组合,以近似CM,使ML-ANCMF能够继承ENKF的优势。其次,我们在估计损失函数时应用合适的差异技术来减少统计误差。最后,我们提出了一个模型选择过程,用于在每个更新步骤中选择应用过滤器,即ENKF或ML-ACMF。我们使用Lorenz-63和Lorenz-96系统演示了ML-ACMF性能,并表明ML-ACMF优于ENKF和基于可能性的ENCMF。
translated by 谷歌翻译
The purpose of this paper is to explore the use of deep learning for the solution of the nonlinear filtering problem. This is achieved by solving the Zakai equation by a deep splitting method, previously developed for approximate solution of (stochastic) partial differential equations. This is combined with an energy-based model for the approximation of functions by a deep neural network. This results in a computationally fast filter that takes observations as input and that does not require re-training when new observations are received. The method is tested on four examples, two linear in one and twenty dimensions and two nonlinear in one dimension. The method shows promising performance when benchmarked against the Kalman filter and the bootstrap particle filter.
translated by 谷歌翻译
在许多学科中,动态系统的数据信息预测模型的开发引起了广泛的兴趣。我们提出了一个统一的框架,用于混合机械和机器学习方法,以从嘈杂和部分观察到的数据中识别动态系统。我们将纯数据驱动的学习与混合模型进行比较,这些学习结合了不完善的域知识。我们的公式与所选的机器学习模型不可知,在连续和离散的时间设置中都呈现,并且与表现出很大的内存和错误的模型误差兼容。首先,我们从学习理论的角度研究无内存线性(W.R.T.参数依赖性)模型误差,从而定义了过多的风险和概括误差。对于沿阵行的连续时间系统,我们证明,多余的风险和泛化误差都通过与T的正方形介于T的术语(指定训练数据的时间间隔)的术语界定。其次,我们研究了通过记忆建模而受益的方案,证明了两类连续时间复发性神经网络(RNN)的通用近似定理:两者都可以学习与内存有关的模型误差。此外,我们将一类RNN连接到储层计算,从而将学习依赖性错误的学习与使用随机特征在Banach空间之间进行监督学习的最新工作联系起来。给出了数值结果(Lorenz '63,Lorenz '96多尺度系统),以比较纯粹的数据驱动和混合方法,发现混合方法较少,渴望数据较少,并且更有效。最后,我们从数值上证明了如何利用数据同化来从嘈杂,部分观察到的数据中学习隐藏的动态,并说明了通过这种方法和培训此类模型来表示记忆的挑战。
translated by 谷歌翻译
自50年代后期以来,当发射第一个人造卫星时,居民太空物品(RSO)的数量已稳步增加。据估计,目前约有100万个大于1厘米的物体正在绕地球绕,只有30,000个,大于10厘米,目前正在跟踪。为了避免碰撞的链反应,称为凯斯勒综合征,必须准确跟踪和预测空间碎片和卫星的轨道是必不可少的。当前基于物理的方法在7天的预测中存在误差,在考虑大部分小于1米的空间碎片时,这是不够的。通常,这种故障是由于轨迹开始时空间对象状态周围的不确定性,在环境条件(例如大气阻力)中的预测错误以及RSO的质量或几何形状等特定的未知特征。利用数据驱动的技术,即机器学习,可以提高轨道预测准确性:通过得出未测量的对象的特征,改善非保守力的效果,并通过深度学习模型具有高度复杂的非复杂性非 - 的卓越抽象能力来建模线性系统。在这项调查中,我们概述了该领域正在完成的当前工作。
translated by 谷歌翻译
预测在环境中只有部分了解其动态的综合动态现象是各种科学领域的普遍存在问题。虽然纯粹的数据驱动方法在这种情况下可以说是不充分的,但是基于标准的物理建模的方法往往是过于简单的,诱导不可忽略的错误。在这项工作中,我们介绍了适当性框架,是一种具有深度数据驱动模型的微分方程所描述的不完整物理动态的原则方法。它包括将动态分解为两个组件:对我们有一些先验知识的动态的物理组件,以及物理模型错误的数据驱动组件核对。仔细制定学习问题,使得物理模型尽可能多地解释数据,而数据驱动组件仅描述了物理模型不能捕获的信息,不再少。这不仅为这种分解提供了存在和唯一性,而且还确保了可解释性和益处泛化。在三个重要用例中进行的实验,每个代表不同的现象,即反应 - 扩散方程,波动方程和非线性阻尼摆锤,表明,空间程度可以有效地利用近似物理模型来准确地预测系统的演变并正确识别相关的物理参数。
translated by 谷歌翻译
罕见事件计算研究中的一个中心对象是委员会函数。尽管计算成本高昂,但委员会功能编码涉及罕见事件的过程的完整机械信息,包括反应率和过渡状态合奏。在过渡路径理论(TPT)的框架下,最近的工作[1]提出了一种算法,其中反馈回路融合了一个神经网络,该神经网络将委员会功能建模为重要性采样,主要是伞形采样,该摘要收集了自适应训练所需的数据。在这项工作中,我们显示需要进行其他修改以提高算法的准确性。第一个修改增加了监督学习的要素,这使神经网络通过拟合从短分子动力学轨迹获得的委员会值的样本均值估计来改善其预测。第二个修改用有限的温度字符串(FTS)方法代替了基于委员会的伞采样,该方法可以在过渡途径的区域中进行均匀抽样。我们测试了具有非凸电势能的低维系统的修改,可以通过分析或有限元方法找到参考解决方案,并显示如何将监督学习和FTS方法组合在一起,从而准确地计算了委员会功能和反应速率。我们还为使用FTS方法的算法提供了错误分析,使用少数样品在训练过程中可以准确估算反应速率。然后将这些方法应用于未知参考溶液的分子系统,其中仍然可以获得委员会功能和反应速率的准确计算。
translated by 谷歌翻译
生产精确的天气预报和不确定的不确定性的可靠量化是一个开放的科学挑战。到目前为止,集团预测是最成功的方法,以产生相关预测的方法以及估计其不确定性。集合预测的主要局限性是高计算成本,难以捕获和量化不同的不确定性来源,特别是与模型误差相关的源。在这项工作中,进行概念证据模型实验,以检查培训的ANN的性能,以预测系统的校正状态和使用单个确定性预测作为输入的状态不确定性。我们比较不同的培训策略:一个基于使用集合预测的平均值和传播作为目标的直接培训,另一个依赖于使用确定性预测作为目标的决定性预测,其中来自数据隐含地学习不确定性。对于最后一种方法,提出和评估了两个替代损失函数,基于数据观察似然和基于误差的本地估计来评估另一个丢失功能。在不同的交货时间和方案中检查网络的性能,在没有模型错误的情况下。使用Lorenz'96模型的实验表明,ANNS能够模拟集合预测的一些属性,如最不可预测模式的过滤和预测不确定性的状态相关量化。此外,ANNS提供了在模型误差存在下的预测不确定性的可靠估计。
translated by 谷歌翻译
根据数据得出的模型的顺序/维度通常受观测值的数量或受监视系统(传感节点)的上下文的限制。对于结构系统(例如,民用或机械结构)尤其如此,这通常是高维本质上的。在物理知识的机器学习范围内,本文提出了一个框架(称为神经模态odes),以将基于物理学的建模与深度学习(尤其是神经通用差分方程 - 神经odes)整合在一起,以建模受监视和高的动态。 - 维工程系统。在这种启动探索中,我们将自己限制在线性或轻度非线性系统中。我们提出了一种结构,该体系结构将变异自动编码器的动态版本与物理信息的神经odes(Pi-神经odes)融合在一起。作为自动编码器的一部分,编码器从观测数据的前几个项目到潜在变量的初始值学习了抽象映射,从而驱动通过物理知识的神经odes学习嵌入式动力学,并施加\ textit {模态模型}该潜在空间的结构。所提出的模型的解码器采用了从应用于基于物理学模型的线性化部分的本征分析中得出的本征模:一种隐含携带自由度(DOFS)之间的空间关系的过程。该框架在数值示例中得到了验证,以及一个缩放的电缆固定桥的实验数据集,在该数据集中,学到的混合模型被证明胜过纯粹基于物理的建模方法。我们进一步显示了在虚拟传感的上下文中,即从空间稀疏数据中恢复了未衡量的DOF中的广义响应量。
translated by 谷歌翻译