许多用于腿部机器人系统的控制器在离散混合事件下利用开放环控制或闭环控制来增强稳定性。这些控制器出现在几个经过良好研究的现象中,例如Raibert Stepping控制器,Paddle Juggling和Swing Leet Retraction。这项工作介绍了混合事件塑造(HES):一种用于分析和生产稳定混合事件控制器的广义方法。HES利用盐矩阵,该盐矩阵给出了封闭形式的方程,以实现混合事件对稳定性的影响。我们还引入了形状参数,这是可以完全独立于系统动力学以促进稳定性的高阶项。优化方法用于产生这些参数的值,以优化稳定性度量。混合事件塑造捕获了先前开发的控制方法,同时还产生了新的最佳稳定轨迹,而无需连续域反馈。
translated by 谷歌翻译
模型预测控制(MPC)是控制机器人的流行策略,但由于混合动力学的复杂性质,很难接触系统。为了实现具有联系的系统,动态模型通常被简化或及时固定,以便有效地计划轨迹。在这项工作中,我们将混合迭代线性二次调节器扩展到以MPC方式(HILQR MPC)工作的1)通过1)修改触点模式时如何计算成本函数,2)在模拟刚体动态和3时使用并行处理。 )使用刚体动力学的有效分析衍生化计算。结果是一个可以修改参考行为的接触顺序并凝聚力计划的系统 - 在处理大型扰动时至关重要。 HILQR MPC在两个系统上进行了测试:首先,在简单的驱动弹跳球混合系统上验证了混合成本修改。然后将HILQR MPC与在四倍的机器人(Unitree A1)上使用质心动态假设的方法进行比较。 HILQR MPC在模拟和硬件测试中的表现优于质心方法。
translated by 谷歌翻译
在本文中,我们全能地提出了一种基于混合线性倒置的方法(H唇),用于合成和稳定3D足底双模行走,重点是彻底的硬件实现。提出了H-唇缘以捕获机器人行走的欠置和致动部分的基本组成部分。然后基于H唇直接合成机器人行走步态。我们全面地表征了H唇的周期性轨道,并通过其步骤 - 步骤(S2S)动力学可证明步骤稳定,然后用于近似于质量中心的水平状态的S2S动态(COM)机器人散步。近似设施基于H唇的步进控制器,提供所需的步长,以稳定机器人行走。通过实现所需的步骤尺寸,机器人实现了动态且稳定的行走。在欠扰动的BipeDal机器人Cassie的模拟和实验中完全评估了该方法,其展示了具有高通用和鲁棒性的动态行走行为。
translated by 谷歌翻译
在本文中,我们提出了一种通过与不确定的表面接触来更新机器人状态信念的方法,并将此更新应用于卡尔曼过滤器,以进行更准确的状态估计。在检查后卫表面不确定性如何影响每种模式的时间时,我们得出了一个护罩盐矩阵 - 在混合事件之前将其映射到混合事件之前的扰动,以使其在扰动之后 - 考虑到结果状态的额外变化。此外,我们建议使用参数化的重置函数 - 捕获未知参数如何将状态从一种模式映射到另一种模式的方式 - 雅各布式的jacobian说明了所得状态中的额外不确定性。通过不确定的过渡事件模拟采样分布并比较所得的协方差,可以显示这些映射的准确性。最后,我们将这些附加术语集成到“不确定性意识到的咸卡尔曼过滤器”中,并在各种测试条件和系统上显示平均估计误差的峰值降低24-60%。
translated by 谷歌翻译
The ability to generate dynamic walking in real-time for bipedal robots with input constraints and underactuation has the potential to enable locomotion in dynamic, complex and unstructured environments. Yet, the high-dimensional nature of bipedal robots has limited the use of full-order rigid body dynamics to gaits which are synthesized offline and then tracked online. In this work we develop an online nonlinear model predictive control approach that leverages the full-order dynamics to realize diverse walking behaviors. Additionally, this approach can be coupled with gaits synthesized offline via a desired reference to enable a shorter prediction horizon and rapid online re-planning, bridging the gap between online reactive control and offline gait planning. We demonstrate the proposed method, both with and without an offline gait, on the planar robot AMBER-3M in simulation and on hardware.
translated by 谷歌翻译
如果机器人曾经实现与动物所展示的机器人相当的自动运动,则它们必须获得在损害,故障或环境条件下快速恢复运动行为的能力,从而损害了其有效移动的能力。我们提出了一种方法,该方法使我们的机器人和模拟机器人能够在几十次尝试中恢复自由运动行为的高度。我们的方法采用行为规范,以等级的差异约束来表达所需的行为。我们展示了如何通过编码模板来考虑这些约束,从而产生了将先前优化的行为推广到新情况下以快速学习的形式概括的秘诀。我们进一步说明,在数据驱动的上下文中,足够的限制通常很容易确定。作为例证,我们证明了我们在物理7 DOF六型六杆元机器人上的恢复方法,以及对6 DOF 2D运动机制的模拟。在这两种情况下,我们恢复了与先前优化的运动在功能上无法区分的行为。
translated by 谷歌翻译
在双皮德机器人上生成健壮步态的能力是他们在硬件上成功实现的关键。为此,这项工作扩展了混合零动力学(HZD)的方法 - 传统上,该方法仅在完美影响事件下通过周期性限制来说明机车稳定性 - 通过包含盐矩阵,以构成合成强大的步行步态的观点。通过共同将扩展盐矩阵的规范和步态生成过程中的机器人的扭矩最小化,我们表明合成的步态比单独使用任何一个术语产生的步态更强大。这些结果在模拟和硬件中显示了琥珀色3M平面和阿塔兰特较低体外外骨骼(无论有没有人类)。最终结果是实验验证,即将盐矩阵与HZD方法相结合,在实践中会产生更健壮的两足步行。
translated by 谷歌翻译
Controller design for bipedal walking on dynamic rigid surfaces (DRSes), which are rigid surfaces moving in the inertial frame (e.g., ships and airplanes), remains largely uninvestigated. This paper introduces a hierarchical control approach that achieves stable underactuated bipedal robot walking on a horizontally oscillating DRS. The highest layer of our approach is a real-time motion planner that generates desired global behaviors (i.e., the center of mass trajectories and footstep locations) by stabilizing a reduced-order robot model. One key novelty of this layer is the derivation of the reduced-order model by analytically extending the angular momentum based linear inverted pendulum (ALIP) model from stationary to horizontally moving surfaces. The other novelty is the development of a discrete-time foot-placement controller that exponentially stabilizes the hybrid, linear, time-varying ALIP model. The middle layer of the proposed approach is a walking pattern generator that translates the desired global behaviors into the robot's full-body reference trajectories for all directly actuated degrees of freedom. The lowest layer is an input-output linearizing controller that exponentially tracks those full-body reference trajectories based on the full-order, hybrid, nonlinear robot dynamics. Simulations of planar underactuated bipedal walking on a swaying DRS confirm that the proposed framework ensures the walking stability under different DRS motions and gait types.
translated by 谷歌翻译
两足动物的步行是机器人一直试图模仿数十年的最重要人类的标志之一。尽管以前的控制方法已经达到了在某些地形上行走的机器人,但仍需要一个框架,可以在各种兼容的表面上进行稳定和稳健的运动。这项工作提出了一种新型的生物力学风格的控制器,该控制器调节腿的刚度,以支持在兼容的地形上进行健壮和动态的两足动力。首先,扩展了3D双滑道模型,以支持具有可变刚度和阻尼参数的兼容表面上的首次运动。然后,将提出的控制器与线性季节调节器(LQR)控制器进行比较,就踏上软地形的稳健性而言。 LQR控制器显示仅达到174 kN/m的中等地面刚度水平,而其刚度较低,则其失败。相反,所提出的控制器可以在低至30 kN/m的刚度水平下产生稳定的步态,从而导致腿的垂直接地穿透性比其静止长度的10%深。提出的框架可以通过为多种合规形的地形生成稳定的步行轨迹来推进两足步行的领域,可用于控制双子和人形生物,以及改善具有可调刚度的假体设备的控制器。
translated by 谷歌翻译
本文介绍了一个框架,用于合成双皮亚机器人步行,该框架通过数据驱动的台阶(S2S)动力学模型适应未知环境和动态误差。我们首先合成一个S2S控制器,该S2S控制器使用脚部的S2S动力学从混合线性倒置摆(H-LIP)模型中稳定步行。接下来,通过经典的自适应控制方法在线学习了机器人S2S动力学的数据驱动表示。因此,通过适当的连续输出合成捕获数据驱动的S2S控制器和低级跟踪控制器,可以通过适当的连续输出合成来实现所需的离散脚放置。所提出的方法是在仿真的3D两足机器人,Cassie和改进的参考速度跟踪的模拟中实现的。所提出的方法还能够实现步行行为,以适应未知载荷,不准确的机器人模型,外部干扰力,偏置速度估计和未知斜率。
translated by 谷歌翻译
人类能够以显着的敏捷性和轻松的方式谈判计划和计划外行为。本文的目的是系统地研究这种人类行为向两足步行机器人的翻译,即使形态本质上不同。具体而言,我们从计划和计划外的下台开始的人类数据开始。我们从人类减少阶层建模的角度分析了这些数据,编码质量(COM)运动学和接触力的中心,这使这些行为将这些行为转化为双皮德机器人的相应降低阶模型。我们通过基于非线性优化的控制器将所得的行为嵌入了两足机器人的全阶动力学中。最终结果是在不足的步行机器人上模拟中计划和计划外的下台。
translated by 谷歌翻译
在本文中,我们研究了在中间姿势期间应用踝扭矩是否可以是降低运动量的更有效的方法,而不是单独执行腿部长度。脚踝在人类Gaits中有用,因为许多原因包括静态平衡。在这项工作中,我们专门避免了脚后跟和托对福利,以研究中姿势期间的脚跟到脚趾的压力中心的进展是有益的。我们使用“踝关节驱动弹簧加载的倒立摆”模型来模拟压力动力学的变速中心,并且应用轨迹优化来查找最小化运输成本的极限循环。结果表明,对于绝大多数Gaits,脚踝扭矩不会影响运输成本。脚踝在从接地跑到空中跑步的过渡期间减少了在狭窄的Gaits窄带期间的运输成本。这表明在稳定步态的中间姿势期间施加脚踝扭矩不是直接有益的策略,但最有可能是有益的脚跟和脚趾之间的道路。
translated by 谷歌翻译
尽管对Bipeds的运动稳定性进行了广泛的研究,但它们仍然缺乏在湿滑表面上缺乏干扰的应对能力。在本文中,关于表面摩擦限制,开发了一种用于稳定其矢状平面中的双模运动的新型控制器。通过考虑到表面稳定趋势的表面的物理限制,实现了更先进的可靠性水平,从而提供更高的功能,例如在低摩擦表面上推挽恢复,并防止稳定剂过度反应。基于离散的事件的策略包括修改每个脚步开头的步长和时间段,以便在考虑表面摩擦限制作为防止滑动的约束的同时重新建立稳定性必要条件。调整脚步以防止面对外部干扰的滑动被认为是保持稳定性的新策略,与人类反应非常相似。开发方法包括利用基本数学操作来获取控制输入的粗闭式解决方案,允许在收敛和计算成本之间达到平衡,即使具有适度的计算硬件,即使具有实时操作也非常适合实时操作。执行几种数值模拟,包括在低摩擦表面上的不同栅极之间的推挽恢复和切换,以证明所提出的控制器的有效性。在与人体步态经验相关的情况下,结果还揭示了一些有利于稳定性的物理方面以及在Gaits之间切换的事实,以降低面对不同条件的落地的风险。
translated by 谷歌翻译
这项工作介绍了模型预测控制(MPC)的公式,该公式适应基于任务的模型的复杂性,同时保持可行性和稳定性保证。现有的MPC实现通常通过缩短预测范围或简化模型来处理计算复杂性,这两者都可能导致不稳定。受到行为经济学,运动计划和生物力学相关方法的启发,我们的方法通过简单模型解决了MPC问题,用于在地平线区域的动力学和约束,而这种模型是可行的,并且不存在该模型的复杂模型。该方法利用计划和执行的交织来迭代识别这些区域,如果它们满足确切的模板/锚关系,可以安全地简化这些区域。我们表明,该方法不会损害系统的稳定性和可行性特性,并在仿真实验中衡量在四足动物上执行敏捷行为的仿真实验中的性能。我们发现,与固定复杂性实现相比,这种自适应方法可以实现更多的敏捷运动,并扩大可执行任务的范围。
translated by 谷歌翻译
在这项工作中,我们介绍了一个非线性动力学观点,可以为腿部系统的充满活力保守的模型生成和连接步态。特别是,我们表明,保守步态的集合构成了步态空间中局部定义的1D子手机的连接空间。这些歧管是通过能级的无坐标参数化的。我们提出了通过使用数值延续方法,生成集合和分叉点来识别步态家族的算法。为此,我们还介绍了数值实现的几个详细信息。最重要的是,我们为德拉斯斯矩阵建立了必要条件,以在影响范围内保持能量。我们工作的一个重要应用是简单的腿部运动模型,通常能够以几个自由度和少量的物理参数来捕获腿部运动的复杂性。我们证明了框架在具有四个自由度的单足料斗中的功效。
translated by 谷歌翻译
基于联系的决策和规划方法越来越重要,无法为腿机器人提供更高的自主性。源自符号系统的正式合成方法具有巨大的推理潜力,了解高级机器决策,并以正确的担保实现复杂的机动行动。本研究迈出了一种正式设计由受约束和动态变化环境中的任务规划和控制全身动态运动行为的架构组成的架构。在高级别,我们在多肢运动策划器和其动态环境之间制定了两个玩家时间逻辑游戏,以综合提供符号机置操作的获胜策略。这些运动动作满足时间逻辑片段中的所需高级任务规范。这些操作被发送到强大的有限转换系统,该过渡系统合成了满足状态可达性限制的运动控制器。该控制器进一步通过低级运动规划器执行,所述低级运动计划产生可行的机器人轨迹。我们构建一组动态运动模型,可用于腿机器人,作为用于处理各种环境事件的模板库。我们设计了一种重新调整策略,考虑到突然的环境变化或大状态干扰,以增加所产生的机器行为的鲁棒性。我们正式证明分层运动框架的正确性,保证了运动规划层的强大实现。在各种环境中的反应运动行为模拟表明我们的框架具有潜在的智能机置行为的理论基础。
translated by 谷歌翻译
通常,地形几何形状是非平滑的,非线性的,非凸的,如果通过以机器人为中心的视觉单元感知,则似乎部分被遮住且嘈杂。这项工作介绍了能够实时处理上述问题的完整控制管道。我们制定了一个轨迹优化问题,该问题可以在基本姿势和立足点上共同优化,但要遵守高度图。为了避免收敛到不良的本地Optima,我们部署了逐步的优化技术。我们嵌入了一个紧凑的接触式自由稳定性标准,该标准与非平板地面公式兼容。直接搭配用作转录方法,导致一个非线性优化问题,可以在少于十毫秒内在线解决。为了在存在外部干扰的情况下增加鲁棒性,我们用动量观察者关闭跟踪环。我们的实验证明了爬楼梯,踏上垫脚石上的楼梯,并利用各种动态步态在缝隙上。
translated by 谷歌翻译
Bipedal robots have received much attention because of the variety of motion maneuvers that they can produce, and the many applications they have in various areas including rehabilitation. One of these motion maneuvers is walking. In this study, we presented a framework for the trajectory optimization of a 5-link (planar) Biped Robot using hybrid optimization. The walking is modeled with two phases of single-stance (support) phase and the collision phase. The dynamic equations of the robot in each phase are extracted by the Lagrange method. It is assumed that the robot heel strike to the ground is full plastic. The gait is optimized with a method called hybrid optimization. The objective function of this problem is considered to be the integral of torque-squared along the trajectory, and also various constraints such as zero dynamics are satisfied without any approximation. Furthermore, in a new framework, there is presented a constraint called impact invariance, which ensures the periodicity of the time-varying trajectories. On the other hand, other constraints provide better and more human-like movement.
translated by 谷歌翻译
在腿的运动中重新规划对于追踪所需的用户速度,在适应地形并拒绝外部干扰的同时至关重要。在这项工作中,我们提出并测试了实验中的实时非线性模型预测控制(NMPC),用于腿部机器人,以实现各种地形上的动态运动。我们引入了一种基于移动性的标准来定义NMPC成本,增强了二次机器人的运动,同时最大化腿部移动性并提高对地形特征的适应。我们的NMPC基于实时迭代方案,使我们能够以25美元的价格重新计划在线,\ Mathrm {Hz} $ 2 $ 2 $ 2美元的预测地平线。我们使用在质量框架中心中定义的单个刚体动态模型,以提高计算效率。在仿真中,测试NMPC以横穿一组不同尺寸的托盘,走进V形烟囱,并在崎岖的地形上招揽。在真实实验中,我们展示了我们的NMPC与移动功能的有效性,使IIT为87美元\,\ Mathrm {kg} $四分之一的机器人HIQ,以实现平坦地形上的全方位步行,横穿静态托盘,并适应在散步期间重新定位托盘。
translated by 谷歌翻译
由于机器人的脚下缺乏致动,全球地位控制是一个挑战性问题。在本文中,我们应用基于混合的倒立摆(H唇)踩踏3D废除后的双模型机器人进行全球位置控制。H-Lip行走的步骤步骤(S2S)动态近似于机器人行走的实际S2S动态,其中步长被认为是输入。因此,基于H唇的反馈控制器大致控制机器人表现得像H唇,它在误差不变集中保持的差异。模型预测控制(MPC)应用于3D中的全球位置控制的H唇。然后,H唇踩踏然后产生用于跟踪机器人的所需步进尺寸。此外,转向行为与步骤规划集成。拟议的框架在与概念验证实验中的模拟中验证了在模拟中的3D欠扰动的双模型机器人Cassie。
translated by 谷歌翻译