与人类的视野相比,基于卷积神经网络(CNN)的计算机视觉更容易受到对抗性的噪音。这种差异可能归因于眼睛如何样本视觉输入以及大脑如何通过其背侧和腹侧视觉途径处理视网膜样品,这些途径尚未探索计算机视觉。受到大脑的启发,我们设计了复发性神经网络,包括模拟人类视网膜的输入采样器,它是一个指导下一步位置的背面网络,以及代表视网膜样品的腹网络。组合这些模块,这些模型学会了多一眼图像,每一眼就注意一个明显的部分,并随着时间的推移积累表示形式以识别图像。我们测试了此类模型的稳健性,并在不同水平的对抗噪声上测试,特别关注不同输入采样策略的效果。我们的发现表明,视网膜凹和采样使模型更加可靠,并且在给予更长的时间以更多地看一眼图像时,该模型可能会从攻击中纠正自身。总之,强大的视觉识别可以从三种受脑启发的机制的综合使用中受益:视网膜转化,注意力引导的眼动运动和经常性处理,而不是仅喂食的CNN。
translated by 谷歌翻译
最前馈卷积神经网络的花费大约为每像素相同的努力。然而,人的视觉识别是眼球运动和空间的关注,我们将在不同区域内对象的几个一瞥之间的相互作用。通过这种观察的启发,我们提出了一个终端到年底可训练多掠影网络(MGNet)旨在解决高计算的挑战和基于反复向下抽样的注意机制缺乏健壮性其中。具体而言,图像的MGNet依次选择任务相关的区域进行对焦,然后自适应地结合为最终的预测所有收集的信息。 MGNet表示反对敌对攻击和常见的腐败与计算量小强阻力。此外,MGNet本质上更可解释的,因为它明确地告诉我们它的重点在每次迭代中。我们对ImageNet100实验表明,经常性下采样关注机制的潜力,以提高单馈方式。例如,MGNet提高平均常用腐败4.76%的准确率只有36.9%,计算成本。此外,虽然基线招致的精度下降至7.6%,MGNet设法保持在相同的PGD攻击强度44.2%的准确度与RESNET-50骨干。我们的代码可在https://github.com/siahuat0727/MGNet。
translated by 谷歌翻译
Data augmentation is a widely used technique for enhancing the generalization ability of convolutional neural networks (CNNs) in image classification tasks. Occlusion is a critical factor that affects on the generalization ability of image classification models. In order to generate new samples, existing data augmentation methods based on information deletion simulate occluded samples by randomly removing some areas in the images. However, those methods cannot delete areas of the images according to their structural features of the images. To solve those problems, we propose a novel data augmentation method, AdvMask, for image classification tasks. Instead of randomly removing areas in the images, AdvMask obtains the key points that have the greatest influence on the classification results via an end-to-end sparse adversarial attack module. Therefore, we can find the most sensitive points of the classification results without considering the diversity of various image appearance and shapes of the object of interest. In addition, a data augmentation module is employed to generate structured masks based on the key points, thus forcing the CNN classification models to seek other relevant content when the most discriminative content is hidden. AdvMask can effectively improve the performance of classification models in the testing process. The experimental results on various datasets and CNN models verify that the proposed method outperforms other previous data augmentation methods in image classification tasks.
translated by 谷歌翻译
Although deep learning has made remarkable progress in processing various types of data such as images, text and speech, they are known to be susceptible to adversarial perturbations: perturbations specifically designed and added to the input to make the target model produce erroneous output. Most of the existing studies on generating adversarial perturbations attempt to perturb the entire input indiscriminately. In this paper, we propose ExploreADV, a general and flexible adversarial attack system that is capable of modeling regional and imperceptible attacks, allowing users to explore various kinds of adversarial examples as needed. We adapt and combine two existing boundary attack methods, DeepFool and Brendel\&Bethge Attack, and propose a mask-constrained adversarial attack system, which generates minimal adversarial perturbations under the pixel-level constraints, namely ``mask-constraints''. We study different ways of generating such mask-constraints considering the variance and importance of the input features, and show that our adversarial attack system offers users good flexibility to focus on sub-regions of inputs, explore imperceptible perturbations and understand the vulnerability of pixels/regions to adversarial attacks. We demonstrate our system to be effective based on extensive experiments and user study.
translated by 谷歌翻译
The authors thank Nicholas Carlini (UC Berkeley) and Dimitris Tsipras (MIT) for feedback to improve the survey quality. We also acknowledge X. Huang (Uni. Liverpool), K. R. Reddy (IISC), E. Valle (UNICAMP), Y. Yoo (CLAIR) and others for providing pointers to make the survey more comprehensive.
translated by 谷歌翻译
人类严重依赖于形状信息来识别对象。相反,卷积神经网络(CNNS)偏向于纹理。这也许是CNNS易受对抗性示例的影响的主要原因。在这里,我们探索如何将偏差纳入CNN,以提高其鲁棒性。提出了两种算法,基于边缘不变,以中等难以察觉的扰动。在第一个中,分类器在具有边缘图作为附加信道的图像上进行前列地培训。在推断时间,边缘映射被重新计算并连接到图像。在第二算法中,训练了条件GaN,以将边缘映射从干净和/或扰动图像转换为清洁图像。推断在与输入的边缘图对应的生成图像上完成。超过10个数据集的广泛实验证明了算法对FGSM和$ \ ELL_ infty $ PGD-40攻击的有效性。此外,我们表明a)边缘信息还可以使其他对抗训练方法有益,并且B)在边缘增强输入上培训的CNNS对抗自然图像损坏,例如运动模糊,脉冲噪声和JPEG压缩,而不是仅培训的CNNS RGB图像。从更广泛的角度来看,我们的研究表明,CNN不会充分占对鲁棒性至关重要的图像结构。代码可用:〜\ url {https://github.com/aliborji/shapedefense.git}。
translated by 谷歌翻译
在本文中,我们提出了一种防御策略,以通过合并隐藏的层表示来改善对抗性鲁棒性。这种防御策略的关键旨在压缩或过滤输入信息,包括对抗扰动。而且这种防御策略可以被视为一种激活函数,可以应用于任何类型的神经网络。从理论上讲,我们在某些条件下也证明了这种防御策略的有效性。此外,合并隐藏层表示,我们提出了三种类型的对抗攻击,分别生成三种类型的对抗示例。实验表明,我们的防御方法可以显着改善深神经网络的对抗性鲁棒性,即使我们不采用对抗性训练,也可以实现最新的表现。
translated by 谷歌翻译
对手补丁攻击是一个攻击算法的家庭,扰乱了一部分图像来欺骗深度神经网络模型。现有的补丁攻击主要考虑在输入 - 不可止液位置注入对抗性修补程序:预定义位置或随机位置。此攻击设置可能足以进行攻击,但在使用它时具有相当的限制以进行对抗性培训。因此,随着现有补丁攻击训练的强大模型不能有效地捍卫其他对抗攻击。在本文中,我们首先提出了一种端到端的补丁攻击算法,生成动态补丁攻击(GDPA),其在每个输入图像上对每个输入图像进行对外的修补程序模式和补丁位置。我们表明GDPA是一种通用攻击框架,可以产生具有一些配置更改的动态/静态和可见/不可见的补丁。其次,GDPA可以容易地融入对抗性培训,以改善对各种对抗攻击的模型鲁棒性。关于VGGFace,交通标志和想象的广泛实验表明,GDPA达到了比最先进的补丁攻击更高的攻击成功率,而具有GDPA的前列培训模型表明对竞争方法的对抗性补丁攻击的优越稳健性。我们的源代码可以在https://github.com/lxuniverse/gdpa找到。
translated by 谷歌翻译
深度神经网络容易受到来自对抗性投入的攻击,并且最近,特洛伊木马误解或劫持模型的决定。我们通过探索有界抗逆性示例空间和生成的对抗网络内的自然输入空间来揭示有界面的对抗性实例 - 通用自然主义侵害贴片的兴趣类 - 我们呼叫TNT。现在,一个对手可以用一个自然主义的补丁来手臂自己,不太恶意,身体上可实现,高效 - 实现高攻击成功率和普遍性。 TNT是普遍的,因为在场景中的TNT中捕获的任何输入图像都将:i)误导网络(未确定的攻击);或ii)迫使网络进行恶意决定(有针对性的攻击)。现在,有趣的是,一个对抗性补丁攻击者有可能发挥更大的控制水平 - 选择一个独立,自然的贴片的能力,与被限制为嘈杂的扰动的触发器 - 到目前为止只有可能与特洛伊木马攻击方法有可能干扰模型建设过程,以嵌入风险发现的后门;但是,仍然意识到在物理世界中部署的补丁。通过对大型视觉分类任务的广泛实验,想象成在其整个验证集50,000张图像中进行评估,我们展示了TNT的现实威胁和攻击的稳健性。我们展示了攻击的概括,以创建比现有最先进的方法实现更高攻击成功率的补丁。我们的结果表明,攻击对不同的视觉分类任务(CIFAR-10,GTSRB,PUBFIG)和多个最先进的深神经网络,如WieredEnet50,Inception-V3和VGG-16。
translated by 谷歌翻译
神经科学家和机器学习研究人员通常引用对抗的例子,作为计算模型如何从生物感官系统发散的示例。最近的工作已经提出将生物启发组件添加到视觉神经网络中,作为提高其对抗性鲁棒性的一种方式。一种令人惊讶的有效组分,用于减少对抗性脆弱性是响应随机性,例如由生物神经元呈现的响应性随机性。在这里,使用最近开发的从计算神经科学的几何技术,我们研究了对抗性扰动如何影响标准,前列培训和生物学启发的随机网络的内部表示。我们为每种类型的网络找到了不同的几何签名,揭示了实现稳健表示的不同机制。接下来,我们将这些结果概括为听觉域,表明神经插值性也使听觉模型对对抗对抗扰动更鲁棒。随机网络的几何分析揭示了清洁和离前动脉扰动刺激的表示之间的重叠,并且定量表现出随机性的竞争几何效果在对抗和清洁性能之间调解权衡。我们的结果阐明了通过对外内培训和随机网络利用的强大感知的策略,并帮助解释了随机性如何有利于机器和生物计算。
translated by 谷歌翻译
我们提出了一种新颖且有效的纯化基于纯化的普通防御方法,用于预处理盲目的白色和黑匣子攻击。我们的方法仅在一般图像上进行了自我监督学习,在计算上效率和培训,而不需要对分类模型的任何对抗训练或再培训。我们首先显示对原始图像与其对抗示例之间的残余的对抗噪声的实证分析,几乎均为对称分布。基于该观察,我们提出了一种非常简单的迭代高斯平滑(GS),其可以有效地平滑对抗性噪声并实现大大高的鲁棒精度。为了进一步改进它,我们提出了神经上下文迭代平滑(NCIS),其以自我监督的方式列举盲点网络(BSN)以重建GS也平滑的原始图像的辨别特征。从我们使用四种分类模型对大型想象成的广泛实验,我们表明我们的方法既竞争竞争标准精度和最先进的强大精度,则针对最强大的净化器 - 盲目的白色和黑匣子攻击。此外,我们提出了一种用于评估基于商业图像分类API的纯化方法的新基准,例如AWS,Azure,Clarifai和Google。我们通过基于集合转移的黑匣子攻击产生对抗性实例,这可以促进API的完全错误分类,并证明我们的方法可用于增加API的抗逆性鲁棒性。
translated by 谷歌翻译
Recent work has demonstrated that deep neural networks are vulnerable to adversarial examples-inputs that are almost indistinguishable from natural data and yet classified incorrectly by the network. In fact, some of the latest findings suggest that the existence of adversarial attacks may be an inherent weakness of deep learning models. To address this problem, we study the adversarial robustness of neural networks through the lens of robust optimization. This approach provides us with a broad and unifying view on much of the prior work on this topic. Its principled nature also enables us to identify methods for both training and attacking neural networks that are reliable and, in a certain sense, universal. In particular, they specify a concrete security guarantee that would protect against any adversary. These methods let us train networks with significantly improved resistance to a wide range of adversarial attacks. They also suggest the notion of security against a first-order adversary as a natural and broad security guarantee. We believe that robustness against such well-defined classes of adversaries is an important stepping stone towards fully resistant deep learning models. 1
translated by 谷歌翻译
在过去的几年中,卷积神经网络(CNN)一直是广泛的计算机视觉任务中的主导神经架构。从图像和信号处理的角度来看,这一成功可能会令人惊讶,因为大多数CNN的固有空间金字塔设计显然违反了基本的信号处理法,即在其下采样操作中对定理进行采样。但是,由于不良的采样似乎不影响模型的准确性,因此在模型鲁棒性开始受到更多关注之前,该问题已被广泛忽略。最近的工作[17]在对抗性攻击和分布变化的背景下,毕竟表明,CNN的脆弱性与不良下降采样操作引起的混叠伪像之间存在很强的相关性。本文以这些发现为基础,并引入了一个可混合的免费下采样操作,可以轻松地插入任何CNN体系结构:频lowcut池。我们的实验表明,结合简单而快速的FGSM对抗训练,我们的超参数无操作员显着提高了模型的鲁棒性,并避免了灾难性的过度拟合。
translated by 谷歌翻译
基于深度学习的图像识别系统已广泛部署在当今世界的移动设备上。然而,在最近的研究中,深入学习模型被证明易受对抗的例子。一种逆势例的一个变种,称为对抗性补丁,由于其强烈的攻击能力而引起了研究人员的注意。虽然对抗性补丁实现了高攻击成功率,但由于补丁和原始图像之间的视觉不一致,它们很容易被检测到。此外,它通常需要对文献中的对抗斑块产生的大量数据,这是计算昂贵且耗时的。为了解决这些挑战,我们提出一种方法来产生具有一个单一图像的不起眼的对抗性斑块。在我们的方法中,我们首先通过利用多尺度发生器和鉴别器来决定基于受害者模型的感知敏感性的补丁位置,然后以粗糙的方式产生对抗性斑块。鼓励修补程序与具有对抗性训练的背景图像一致,同时保留强烈的攻击能力。我们的方法显示了白盒设置中的强烈攻击能力以及通过对具有不同架构和培训方法的各种型号的广泛实验,通过广泛的实验进行黑盒设置的优异转移性。与其他对抗贴片相比,我们的对抗斑块具有最大忽略的风险,并且可以避免人类观察,这是由显着性图和用户评估结果的插图支持的人类观察。最后,我们表明我们的对抗性补丁可以应用于物理世界。
translated by 谷歌翻译
由于缺乏对AI模型的安全性和鲁棒性的信任,近年来,深度学习模型(尤其是针对安全至关重要的系统)中的对抗性攻击正在越来越受到关注。然而,更原始的对抗性攻击可能是身体上不可行的,或者需要一些难以访问的资源,例如训练数据,这激发了斑块攻击的出现。在这项调查中,我们提供了全面的概述,以涵盖现有的对抗贴片攻击技术,旨在帮助感兴趣的研究人员迅速赶上该领域的进展。我们还讨论了针对对抗贴片的检测和防御措施的现有技术,旨在帮助社区更好地了解该领域及其在现实世界中的应用。
translated by 谷歌翻译
近年来,可解释的人工智能(XAI)已成为一个非常适合的框架,可以生成人类对“黑盒”模型的可理解解释。在本文中,一种新颖的XAI视觉解释算法称为相似性差异和唯一性(SIDU)方法,该方法可以有效地定位负责预测的整个对象区域。通过各种计算和人类主题实验分析了SIDU算法的鲁棒性和有效性。特别是,使用三种不同类型的评估(应用,人类和功能地面)评估SIDU算法以证明其出色的性能。在对“黑匣子”模型的对抗性攻击的情况下,进一步研究了Sidu的鲁棒性,以更好地了解其性能。我们的代码可在:https://github.com/satyamahesh84/sidu_xai_code上找到。
translated by 谷歌翻译
已知深度神经网络(DNN)容易受到用不可察觉的扰动制作的对抗性示例的影响,即,输入图像的微小变化会引起错误的分类,从而威胁着基于深度学习的部署系统的可靠性。经常采用对抗训练(AT)来通过训练损坏和干净的数据的混合物来提高DNN的鲁棒性。但是,大多数基于AT的方法在处理\ textit {转移的对抗示例}方面是无效的,这些方法是生成以欺骗各种防御模型的生成的,因此无法满足现实情况下提出的概括要求。此外,对抗性训练一般的国防模型不能对具有扰动的输入产生可解释的预测,而不同的领域专家则需要一个高度可解释的强大模型才能了解DNN的行为。在这项工作中,我们提出了一种基于Jacobian规范和选择性输入梯度正则化(J-SIGR)的方法,该方法通过Jacobian归一化提出了线性化的鲁棒性,还将基于扰动的显着性图正规化,以模仿模型的可解释预测。因此,我们既可以提高DNN的防御能力和高解释性。最后,我们评估了跨不同体系结构的方法,以针对强大的对抗性攻击。实验表明,提出的J-Sigr赋予了针对转移的对抗攻击的鲁棒性,我们还表明,来自神经网络的预测易于解释。
translated by 谷歌翻译
许多最先进的ML模型在各种任务中具有优于图像分类的人类。具有如此出色的性能,ML模型今天被广泛使用。然而,存在对抗性攻击和数据中毒攻击的真正符合ML模型的稳健性。例如,Engstrom等人。证明了最先进的图像分类器可以容易地被任意图像上的小旋转欺骗。由于ML系统越来越纳入安全性和安全敏感的应用,对抗攻击和数据中毒攻击构成了相当大的威胁。本章侧重于ML安全的两个广泛和重要的领域:对抗攻击和数据中毒攻击。
translated by 谷歌翻译
深度学习(DL)在许多与人类相关的任务中表现出巨大的成功,这导致其在许多计算机视觉的基础应用中采用,例如安全监控系统,自治车辆和医疗保健。一旦他们拥有能力克服安全关键挑战,这种安全关键型应用程序必须绘制他们的成功部署之路。在这些挑战中,防止或/和检测对抗性实例(AES)。对手可以仔细制作小型,通常是难以察觉的,称为扰动的噪声被添加到清洁图像中以产生AE。 AE的目的是愚弄DL模型,使其成为DL应用的潜在风险。在文献中提出了许多测试时间逃避攻击和对策,即防御或检测方法。此外,还发布了很少的评论和调查,理论上展示了威胁的分类和对策方法,几乎​​没有焦点检测方法。在本文中,我们专注于图像分类任务,并试图为神经网络分类器进行测试时间逃避攻击检测方法的调查。对此类方法的详细讨论提供了在四个数据集的不同场景下的八个最先进的探测器的实验结果。我们还为这一研究方向提供了潜在的挑战和未来的观点。
translated by 谷歌翻译
Although deep neural networks (DNNs) have achieved great success in many tasks, they can often be fooled by adversarial examples that are generated by adding small but purposeful distortions to natural examples. Previous studies to defend against adversarial examples mostly focused on refining the DNN models, but have either shown limited success or required expensive computation. We propose a new strategy, feature squeezing, that can be used to harden DNN models by detecting adversarial examples. Feature squeezing reduces the search space available to an adversary by coalescing samples that correspond to many different feature vectors in the original space into a single sample. By comparing a DNN model's prediction on the original input with that on squeezed inputs, feature squeezing detects adversarial examples with high accuracy and few false positives.This paper explores two feature squeezing methods: reducing the color bit depth of each pixel and spatial smoothing. These simple strategies are inexpensive and complementary to other defenses, and can be combined in a joint detection framework to achieve high detection rates against state-of-the-art attacks.
translated by 谷歌翻译