The rapidly evolving industry demands high accuracy of the models without the need for time-consuming and computationally expensive experiments required for fine-tuning. Moreover, a model and training pipeline, which was once carefully optimized for a specific dataset, rarely generalizes well to training on a different dataset. This makes it unrealistic to have carefully fine-tuned models for each use case. To solve this, we propose an alternative approach that also forms a backbone of Intel Geti platform: a dataset-agnostic template for object detection trainings, consisting of carefully chosen and pre-trained models together with a robust training pipeline for further training. Our solution works out-of-the-box and provides a strong baseline on a wide range of datasets. It can be used on its own or as a starting point for further fine-tuning for specific use cases when needed. We obtained dataset-agnostic templates by performing parallel training on a corpus of datasets and optimizing the choice of architectures and training tricks with respect to the average results on the whole corpora. We examined a number of architectures, taking into account the performance-accuracy trade-off. Consequently, we propose 3 finalists, VFNet, ATSS, and SSD, that can be deployed on CPU using the OpenVINO toolkit. The source code is available as a part of the OpenVINO Training Extensions (https://github.com/openvinotoolkit/training_extensions}
translated by 谷歌翻译
In object detection, the intersection over union (IoU) threshold is frequently used to define positives/negatives. The threshold used to train a detector defines its quality. While the commonly used threshold of 0.5 leads to noisy (low-quality) detections, detection performance frequently degrades for larger thresholds. This paradox of high-quality detection has two causes: 1) overfitting, due to vanishing positive samples for large thresholds, and 2) inference-time quality mismatch between detector and test hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, composed of a sequence of detectors trained with increasing IoU thresholds, is proposed to address these problems. The detectors are trained sequentially, using the output of a detector as training set for the next. This resampling progressively improves hypotheses quality, guaranteeing a positive training set of equivalent size for all detectors and minimizing overfitting. The same cascade is applied at inference, to eliminate quality mismatches between hypotheses and detectors. An implementation of the Cascade R-CNN without bells or whistles achieves state-of-the-art performance on the COCO dataset, and significantly improves high-quality detection on generic and specific object detection datasets, including VOC, KITTI, CityPerson, and WiderFace. Finally, the Cascade R-CNN is generalized to instance segmentation, with nontrivial improvements over the Mask R-CNN. To facilitate future research, two implementations are made available at https://github.com/zhaoweicai/cascade-rcnn (Caffe) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron).
translated by 谷歌翻译
The 1$^{\text{st}}$ Workshop on Maritime Computer Vision (MaCVi) 2023 focused on maritime computer vision for Unmanned Aerial Vehicles (UAV) and Unmanned Surface Vehicle (USV), and organized several subchallenges in this domain: (i) UAV-based Maritime Object Detection, (ii) UAV-based Maritime Object Tracking, (iii) USV-based Maritime Obstacle Segmentation and (iv) USV-based Maritime Obstacle Detection. The subchallenges were based on the SeaDronesSee and MODS benchmarks. This report summarizes the main findings of the individual subchallenges and introduces a new benchmark, called SeaDronesSee Object Detection v2, which extends the previous benchmark by including more classes and footage. We provide statistical and qualitative analyses, and assess trends in the best-performing methodologies of over 130 submissions. The methods are summarized in the appendix. The datasets, evaluation code and the leaderboard are publicly available at https://seadronessee.cs.uni-tuebingen.de/macvi.
translated by 谷歌翻译
基准,如Coco,在物体检测中发挥至关重要的作用。然而,现有的基准在规模变化中不足,他们的协议不足以进行公平比较。在本文中,我们介绍了通用尺度对象检测基准(USB)。 USB通过将Coco与最近提出的Waymo Open DataSet和Manga109-S数据集合并了Coco,USB具有对象尺度和图像域的变化。为了实现公平的比较和包容性研究,我们提出了培训和评估议定书。它们有多个部门用于培训时期和评估图像分辨率,如体育中的重量类,以及跨训练协议的兼容性,如通用串行总线的后向兼容性。具体而言,我们要求参与者报告结果,不仅具有更高的协议(更长的培训),而且还有更低的协议(较短培训)。使用所提出的基准和协议,我们分析了八种方法,发现了现有的Coco-偏偏见方法的缺点。代码可在https://github.com/shinya7y/universenet上获得。
translated by 谷歌翻译
工业X射线分析在需要保证某些零件的结构完整性的航空航天,汽车或核行业中很常见。但是,射线照相图像的解释有时很困难,可能导致两名专家在缺陷分类上不同意。本文介绍的自动缺陷识别(ADR)系统将减少分析时间,还将有助于减少对缺陷的主观解释,同时提高人类检查员的可靠性。我们的卷积神经网络(CNN)模型达到94.2 \%准确性(MAP@iou = 50 \%),当应用于汽车铝铸件数据集(GDXRAR)时,它被认为与预期的人类性能相似,超过了当前状态该数据集的艺术。在工业环境上,其推理时间少于每个DICOM图像,因此可以安装在生产设施上,不会影响交付时间。此外,还进行了对主要高参数的消融研究,以优化从75 \%映射的初始基线结果最高94.2 \%map的模型准确性。
translated by 谷歌翻译
In object detection, an intersection over union (IoU) threshold is required to define positives and negatives. An object detector, trained with low IoU threshold, e.g. 0.5, usually produces noisy detections. However, detection performance tends to degrade with increasing the IoU thresholds. Two main factors are responsible for this: 1) overfitting during training, due to exponentially vanishing positive samples, and 2) inference-time mismatch between the IoUs for which the detector is optimal and those of the input hypotheses. A multi-stage object detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of a sequence of detectors trained with increasing IoU thresholds, to be sequentially more selective against close false positives. The detectors are trained stage by stage, leveraging the observation that the output of a detector is a good distribution for training the next higher quality detector. The resampling of progressively improved hypotheses guarantees that all detectors have a positive set of examples of equivalent size, reducing the overfitting problem. The same cascade procedure is applied at inference, enabling a closer match between the hypotheses and the detector quality of each stage. A simple implementation of the Cascade R-CNN is shown to surpass all single-model object detectors on the challenging COCO dataset. Experiments also show that the Cascade R-CNN is widely applicable across detector architectures, achieving consistent gains independently of the baseline detector strength. The code will be made available at https://github.com/zhaoweicai/cascade-rcnn.
translated by 谷歌翻译
我们提出对象盒,这是一种新颖的单阶段锚定且高度可推广的对象检测方法。与现有的基于锚固的探测器和无锚的探测器相反,它们更偏向于其标签分配中的特定对象量表,我们仅将对象中心位置用作正样本,并在不同的特征级别中平均处理所有对象,而不论对象'尺寸或形状。具体而言,我们的标签分配策略将对象中心位置视为形状和尺寸不足的锚定,并以无锚固的方式锚定,并允许学习每个对象的所有尺度。为了支持这一点,我们将新的回归目标定义为从中心单元位置的两个角到边界框的四个侧面的距离。此外,为了处理比例变化的对象,我们提出了一个量身定制的损失来处理不同尺寸的盒子。结果,我们提出的对象检测器不需要在数据集中调整任何依赖数据集的超参数。我们在MS-Coco 2017和Pascal VOC 2012数据集上评估了我们的方法,并将我们的结果与最先进的方法进行比较。我们观察到,与先前的作品相比,对象盒的性能优惠。此外,我们执行严格的消融实验来评估我们方法的不同组成部分。我们的代码可在以下网址提供:https://github.com/mohsenzand/objectbox。
translated by 谷歌翻译
在本文中,我们评估了域转移对训练集外部数据外的数据的培训的人类检测模型的影响领域。具体而言,我们使用Robotti平台在农业机器人应用程序的背景下收集的现场数据集中介绍了Opendr人类,从而可以定量测量此类应用程序中域移动的影响。此外,我们通过评估有关训练数据的三种不同的情况来研究手动注释的重要性:a)仅消极样本,即没有描绘的人,b)仅阳性样本,即仅包含人类的图像,而c)既负面c)。和阳性样品。我们的结果表明,即使仅使用负样本,即使对训练过程进行了额外的考虑,也可以达到良好的性能。我们还发现,阳性样品会提高性能,尤其是在更好的本地化方面。该数据集可在https://github.com/opendr-eu/datasets上公开下载。
translated by 谷歌翻译
We present a method for detecting objects in images using a single deep neural network. Our approach, named SSD, discretizes the output space of bounding boxes into a set of default boxes over different aspect ratios and scales per feature map location. At prediction time, the network generates scores for the presence of each object category in each default box and produces adjustments to the box to better match the object shape. Additionally, the network combines predictions from multiple feature maps with different resolutions to naturally handle objects of various sizes. SSD is simple relative to methods that require object proposals because it completely eliminates proposal generation and subsequent pixel or feature resampling stages and encapsulates all computation in a single network. This makes SSD easy to train and straightforward to integrate into systems that require a detection component. Experimental results on the PASCAL VOC, COCO, and ILSVRC datasets confirm that SSD has competitive accuracy to methods that utilize an additional object proposal step and is much faster, while providing a unified framework for both training and inference. For 300 × 300 input, SSD achieves 74.3% mAP 1 on VOC2007 test at 59 FPS on a Nvidia Titan X and for 512 × 512 input, SSD achieves 76.9% mAP, outperforming a comparable state-of-the-art Faster R-CNN model. Compared to other single stage methods, SSD has much better accuracy even with a smaller input image size. Code is available at: https://github.com/weiliu89/caffe/tree/ssd .
translated by 谷歌翻译
Object detection has been dominated by anchor-based detectors for several years. Recently, anchor-free detectors have become popular due to the proposal of FPN and Focal Loss. In this paper, we first point out that the essential difference between anchor-based and anchor-free detection is actually how to define positive and negative training samples, which leads to the performance gap between them. If they adopt the same definition of positive and negative samples during training, there is no obvious difference in the final performance, no matter regressing from a box or a point. This shows that how to select positive and negative training samples is important for current object detectors. Then, we propose an Adaptive Training Sample Selection (ATSS) to automatically select positive and negative samples according to statistical characteristics of object. It significantly improves the performance of anchor-based and anchor-free detectors and bridges the gap between them. Finally, we discuss the necessity of tiling multiple anchors per location on the image to detect objects. Extensive experiments conducted on MS COCO support our aforementioned analysis and conclusions. With the newly introduced ATSS, we improve stateof-the-art detectors by a large margin to 50.7% AP without introducing any overhead. The code is available at https://github.com/sfzhang15/ATSS.
translated by 谷歌翻译
随着深度卷积神经网络的兴起,对象检测在过去几年中取得了突出的进步。但是,这种繁荣无法掩盖小物体检测(SOD)的不令人满意的情况,这是计算机视觉中臭名昭著的挑战性任务之一,这是由于视觉外观不佳和由小目标的内在结构引起的嘈杂表示。此外,用于基准小对象检测方法基准测试的大规模数据集仍然是瓶颈。在本文中,我们首先对小物体检测进行了详尽的审查。然后,为了催化SOD的发展,我们分别构建了两个大规模的小物体检测数据集(SODA),SODA-D和SODA-A,分别集中在驾驶和空中场景上。 SODA-D包括24704个高质量的交通图像和277596个9个类别的实例。对于苏打水,我们收集2510个高分辨率航空图像,并在9个类别上注释800203实例。众所周知,拟议的数据集是有史以来首次尝试使用针对多类SOD量身定制的大量注释实例进行大规模基准测试。最后,我们评估主流方法在苏打水上的性能。我们预计发布的基准可以促进SOD的发展,并产生该领域的更多突破。数据集和代码将很快在:\ url {https://shaunyuan22.github.io/soda}上。
translated by 谷歌翻译
复杂的水下环境为物体检测带来了新的挑战,例如未平衡的光条件,低对比度,阻塞和水生生物的模仿。在这种情况下,水下相机捕获的物体将变得模糊,并且通用探测器通常会在这些模糊的物体上失败。这项工作旨在从两个角度解决问题:不确定性建模和艰难的例子采矿。我们提出了一个名为Boosting R-CNN的两阶段水下检测器,该检测器包括三个关键组件。首先,提出了一个名为RetinArpn的新区域建议网络,该网络提供了高质量的建议,并考虑了对象和IOU预测,以确定对象事先概率的不确定性。其次,引入了概率推理管道,以结合第一阶段的先验不确定性和第二阶段分类评分,以模拟最终检测分数。最后,我们提出了一种名为Boosting Reweighting的新的硬示例挖掘方法。具体而言,当区域提案网络误认为样品的对象的事先概率时,提高重新加权将在训练过程中增加R-CNN头部样品的分类损失,同时减少具有准确估计的先验的简易样品丢失。因此,可以在第二阶段获得强大的检测头。在推理阶段,R-CNN具有纠正第一阶段的误差以提高性能的能力。在两个水下数据集和两个通用对象检测数据集上进行的全面实验证明了我们方法的有效性和鲁棒性。
translated by 谷歌翻译
translated by 谷歌翻译
Single-frame InfraRed Small Target (SIRST) detection has been a challenging task due to a lack of inherent characteristics, imprecise bounding box regression, a scarcity of real-world datasets, and sensitive localization evaluation. In this paper, we propose a comprehensive solution to these challenges. First, we find that the existing anchor-free label assignment method is prone to mislabeling small targets as background, leading to their omission by detectors. To overcome this issue, we propose an all-scale pseudo-box-based label assignment scheme that relaxes the constraints on scale and decouples the spatial assignment from the size of the ground-truth target. Second, motivated by the structured prior of feature pyramids, we introduce the one-stage cascade refinement network (OSCAR), which uses the high-level head as soft proposals for the low-level refinement head. This allows OSCAR to process the same target in a cascade coarse-to-fine manner. Finally, we present a new research benchmark for infrared small target detection, consisting of the SIRST-V2 dataset of real-world, high-resolution single-frame targets, the normalized contrast evaluation metric, and the DeepInfrared toolkit for detection. We conduct extensive ablation studies to evaluate the components of OSCAR and compare its performance to state-of-the-art model-driven and data-driven methods on the SIRST-V2 benchmark. Our results demonstrate that a top-down cascade refinement framework can improve the accuracy of infrared small target detection without sacrificing efficiency. The DeepInfrared toolkit, dataset, and trained models are available at https://github.com/YimianDai/open-deepinfrared to advance further research in this field.
translated by 谷歌翻译
标记数据通常昂贵且耗时,特别是对于诸如对象检测和实例分割之类的任务,这需要对图像的密集标签进行密集的标签。虽然几张拍摄对象检测是关于培训小说中的模型(看不见的)对象类具有很少的数据,但它仍然需要在许多标记的基础(见)类的课程上进行训练。另一方面,自我监督的方法旨在从未标记数据学习的学习表示,该数据转移到诸如物体检测的下游任务。结合几次射击和自我监督的物体检测是一个有前途的研究方向。在本调查中,我们审查并表征了几次射击和自我监督对象检测的最新方法。然后,我们给我们的主要外卖,并讨论未来的研究方向。https://gabrielhuang.github.io/fsod-survey/的项目页面
translated by 谷歌翻译
Due to object detection's close relationship with video analysis and image understanding, it has attracted much research attention in recent years. Traditional object detection methods are built on handcrafted features and shallow trainable architectures. Their performance easily stagnates by constructing complex ensembles which combine multiple low-level image features with high-level context from object detectors and scene classifiers. With the rapid development in deep learning, more powerful tools, which are able to learn semantic, high-level, deeper features, are introduced to address the problems existing in traditional architectures. These models behave differently in network architecture, training strategy and optimization function, etc. In this paper, we provide a review on deep learning based object detection frameworks. Our review begins with a brief introduction on the history of deep learning and its representative tool, namely Convolutional Neural Network (CNN). Then we focus on typical generic object detection architectures along with some modifications and useful tricks to improve detection performance further. As distinct specific detection tasks exhibit different characteristics, we also briefly survey several specific tasks, including salient object detection, face detection and pedestrian detection. Experimental analyses are also provided to compare various methods and draw some meaningful conclusions. Finally, several promising directions and tasks are provided to serve as guidelines for future work in both object detection and relevant neural network based learning systems.
translated by 谷歌翻译
遵循机器视觉系统在线自动化质量控制和检查过程的成功之后,这项工作中为两个不同的特定应用提供了一种对象识别解决方案,即,在医院准备在医院进行消毒的手术工具箱中检测质量控制项目,以及检测血管船体中的缺陷,以防止潜在的结构故障。该解决方案有两个阶段。首先,基于单镜头多伯克斯检测器(SSD)的特征金字塔体系结构用于改善检测性能,并采用基于地面真实的统计分析来选择一系列默认框的参数。其次,利用轻量级神经网络使用回归方法来实现定向检测结果。该方法的第一阶段能够检测两种情况下考虑的小目标。在第二阶段,尽管很简单,但在保持较高的运行效率的同时,检测细长目标是有效的。
translated by 谷歌翻译
The goal of this paper is to serve as a guide for selecting a detection architecture that achieves the right speed/memory/accuracy balance for a given application and platform. To this end, we investigate various ways to trade accuracy for speed and memory usage in modern convolutional object detection systems. A number of successful systems have been proposed in recent years, but apples-toapples comparisons are difficult due to different base feature extractors (e.g., VGG, Residual Networks), different default image resolutions, as well as different hardware and software platforms. We present a unified implementation of the Faster R-CNN [31], R-FCN [6] and SSD [26] systems, which we view as "meta-architectures" and trace out the speed/accuracy trade-off curve created by using alternative feature extractors and varying other critical parameters such as image size within each of these meta-architectures. On one extreme end of this spectrum where speed and memory are critical, we present a detector that achieves real time speeds and can be deployed on a mobile device. On the opposite end in which accuracy is critical, we present a detector that achieves state-of-the-art performance measured on the COCO detection task.
translated by 谷歌翻译
深神网络的对象探测器正在不断发展,并用于多种应用程序,每个应用程序都有自己的要求集。尽管关键安全应用需要高准确性和可靠性,但低延迟任务需要资源和节能网络。不断提出了实时探测器,在高影响现实世界中是必需的,但是它们过分强调了准确性和速度的提高,而其他功能(例如多功能性,鲁棒性,资源和能源效率)则被省略。现有网络的参考基准不存在,设计新网络的标准评估指南也不存在,从而导致比较模棱两可和不一致的比较。因此,我们对广泛的数据集进行了多个实时探测器(基于锚点,关键器和变压器)的全面研究,并报告了一系列广泛指标的结果。我们还研究了变量,例如图像大小,锚固尺寸,置信阈值和架构层对整体性能的影响。我们分析了检测网络的鲁棒性,以防止分配变化,自然腐败和对抗性攻击。此外,我们提供了校准分析来评估预测的可靠性。最后,为了强调现实世界的影响,我们对自动驾驶和医疗保健应用进行了两个独特的案例研究。为了进一步衡量关键实时应用程序中网络的能力,我们报告了在Edge设备上部署检测网络后的性能。我们广泛的实证研究可以作为工业界对现有网络做出明智选择的指南。我们还希望激发研究社区的设计和评估网络的新方向,该网络着重于更大而整体的概述,以实现深远的影响。
translated by 谷歌翻译
面部检测是为了在图像中搜索面部的所有可能区域,并且如果有任何情况,则定位面部。包括面部识别,面部表情识别,面部跟踪和头部姿势估计的许多应用假设面部的位置和尺寸在图像中是已知的。近几十年来,研究人员从Viola-Jones脸上检测器创造了许多典型和有效的面部探测器到当前的基于CNN的CNN。然而,随着图像和视频的巨大增加,具有面部刻度的变化,外观,表达,遮挡和姿势,传统的面部探测器被挑战来检测野外面孔的各种“脸部。深度学习技术的出现带来了非凡的检测突破,以及计算的价格相当大的价格。本文介绍了代表性的深度学习的方法,并在准确性和效率方面提出了深度和全面的分析。我们进一步比较并讨论了流行的并挑战数据集及其评估指标。进行了几种成功的基于深度学习的面部探测器的全面比较,以使用两个度量来揭示其效率:拖鞋和延迟。本文可以指导为不同应用选择合适的面部探测器,也可以开发更高效和准确的探测器。
translated by 谷歌翻译