该文档简要概述了使用机器学习技术时发生的一些常见错误,以及可以采取什么措施来避免它们。它主要是为研究学生提供指南,并专注于学术研究中特别关注的问题,例如需要进行严格的比较并得出有效的结论。它涵盖了机器学习过程的五个阶段:模型构建之前该做什么,如何可靠地构建模型,如何进行健身评估模型,如何公平地比较模型以及如何报告结果。
translated by 谷歌翻译
如今,由于最近在人工智能(AI)和机器学习(ML)中的近期突破,因此,智能系统和服务越来越受欢迎。然而,机器学习不仅满足软件工程,不仅具有有希望的潜力,而且还具有一些固有的挑战。尽管最近的一些研究努力,但我们仍然没有明确了解开发基于ML的申请和当前行业实践的挑战。此外,目前尚不清楚软件工程研究人员应将其努力集中起来,以更好地支持ML应用程序开发人员。在本文中,我们报告了一个旨在了解ML应用程序开发的挑战和最佳实践的调查。我们合成从80名从业者(以不同的技能,经验和应用领域)获得的结果为17个调查结果;概述ML应用程序开发的挑战和最佳实践。参与基于ML的软件系统发展的从业者可以利用总结最佳实践来提高其系统的质量。我们希望报告的挑战将通知研究界有关需要调查的主题,以改善工程过程和基于ML的申请的质量。
translated by 谷歌翻译
用于预测和预测的机器学习(ML)方法已在定量科学中广泛存在。但是,基于ML的科学中有许多已知的方法论陷阱,包括数据泄漏。在本文中,我们系统地研究了基于ML的科学中的可重复性问题。我们表明,数据泄漏确实是一个普遍的问题,并导致了严重的可重复性失败。具体而言,通过对采用ML方法的研究社区中的文献调查,我们发现了17个领域,发现了错误,共同影响了329篇论文,在某些情况下导致了极其解放的结论。根据我们的调查,我们提出了8种泄漏类型的细粒分类法,范围从教科书错误到打开研究问题。我们主张基于ML的科学的基本方法论变化,因此可以在发布前捕获泄漏病例。为此,我们提出了模型信息表,以根据ML模型报告科学主张,以解决我们调查中确定的所有类型的泄漏。为了研究可重复性错误的影响和模型信息表的功效,我们在一个复杂的ML模型被认为比较旧的统计模型(例如逻辑回归(LR):内战预测)的领域进行了可重复性研究。我们发现,与LR模型相比,所有声称复杂ML模型具有出色性能的论文由于数据泄漏而无法再现,并且复杂的ML模型的性能并不比数十年历史的LR模型更好。尽管这些错误都无法通过阅读论文来捕获,但模型信息表将在每种情况下都能检测到泄漏。
translated by 谷歌翻译
随着各种公开的AI伦理原则的共识,差距仍然可以随时采用设计和开发负责任的AI系统。我们研究了来自澳大利亚国家科学研究机构(CSIRO)的研究人员和工程师的实践和经验,他们参与设计和开发AI系统的一系列目的。半结构化访谈用于检查参与者的做法如何与澳大利亚政府提出的一套高级AI伦理原则涉及并对齐。原则包括:隐私保护和安全,可靠性和安全性,透明度和解释性,公平性,竞争性,责任,人以人为本的价值观和人类,社会与环境福祉。研究了研究人员和工程师的见解以及在原则的实际应用中为它们提供的挑战。最后,提供了一系列组织响应,以支持实施高级AI道德原则。
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
无论是在功能选择的领域还是可解释的AI领域,都有基于其重要性的“排名”功能的愿望。然后可以将这种功能重要的排名用于:(1)减少数据集大小或(2)解释机器学习模型。但是,在文献中,这种特征排名没有以系统的,一致的方式评估。许多论文都有不同的方式来争论哪些具有重要性排名最佳的特征。本文通过提出一种新的评估方法来填补这一空白。通过使用合成数据集,可以事先知道特征重要性得分,从而可以进行更系统的评估。为了促进使用新方法的大规模实验,在Python建造了一个名为FSEVAL的基准测定框架。该框架允许并行运行实验,并在HPC系统上的计算机上分布。通过与名为“权重和偏见”的在线平台集成,可以在实时仪表板上进行交互探索图表。该软件作为开源软件发布,并在PYPI平台上以包裹发行。该研究结束时,探索了一个这样的大规模实验,以在许多方面找到参与算法的优势和劣势。
translated by 谷歌翻译
组织依靠机器学习工程师(MLE)来操作ML,即部署和维护生产中的ML管道。操作ML或MLOP的过程包括(i)数据收集和标记的连续循环,(ii)实验以改善ML性能,(iii)在多阶段部署过程中评估,以及(iv)监视(iv)性能下降。当一起考虑这些责任似乎令人震惊 - 任何人如何进行MLOP,没有解决的挑战,对工具制造商有什么影响?我们对在包括聊天机器人,自动驾驶汽车和金融在内的许多应用程序中工作的18个MLE进行了半结构化的民族志访谈。我们的访谈暴露了三个变量,这些变量控制了生产ML部署的成功:速度,验证和版本。我们总结了成功实验,部署和维持生产绩效的共同实践。最后,我们讨论了受访者的痛点和反图案,对工具设计产生了影响。
translated by 谷歌翻译
现在,整个研究社区都可以广泛使用机器学习(ML),它促进了这些新兴的数学技术在广泛学科中的新型和引人注目的应用的扩散。在本文中,我们将重点介绍一个特定的案例研究:古人类学领域,该领域旨在根据生物学和文化证据理解人类的演变。正如我们将表明的那样,ML算法的易用性以及在人类学研究界的适当使用方面缺乏专业知识,导致了整个文献中出现的基本错误应用。结果不可靠的结果不仅破坏了将ML合法纳入人类学研究的努力,而且还会对我们的人类进化和行为过去产生潜在的理解。本文的目的是简要介绍古人类学中ML的某些方式;我们还为那些与该领域完全熟悉的人提供了一些基本ML算法的调查,而该领域仍在积极发展。我们讨论了一系列的错误,错误和违反正确的ML方法方案的行为,这些方法经常在人类学文献的积累体内出现令人不安。这些错误包括使用过时的算法和实践;不适当的火车/测试拆分,样本组成和文本解释;以及由于缺乏数据/代码共享以及随后对独立复制的限制而缺乏透明度。我们断言,扩大样本,共享数据和代码,重新评估同行评审的方法,以及最重要的是,开发包括ML专家在内的跨学科团队对于将ML在人类学中纳入ML的未来研究的进步都是必要的。
translated by 谷歌翻译
基于机器学习(ML)的系统的制作需要在其生命周期中进行统计控制。仔细量化业务需求和识别影响业务需求的关键因素降低了项目故障的风险。业务需求的量化导致随机变量的定义,表示通过统计实验需要分析的系统关键性能指标。此外,可提供的培训和实验结果产生影响系统的设计。开发系统后,测试并不断监控,以确保其符合其业务需求。这是通过持续应用统计实验来分析和控制关键绩效指标来完成的。本书教授制作和开发基于ML的系统的艺术。它倡导“首先”方法,强调从项目生命周期开始定义统计实验的需要。它还详细讨论了如何在整个生命周期中对基于ML的系统进行统计控制。
translated by 谷歌翻译
比较不同的汽车框架是具有挑战性的,并且经常做错了。我们引入了一个开放且可扩展的基准测试,该基准遵循最佳实践,并在比较自动框架时避免常见错误。我们对71个分类和33项回归任务进行了9个著名的自动框架进行了详尽的比较。通过多面分析,评估模型的准确性,与推理时间的权衡以及框架失败,探索了自动框架之间的差异。我们还使用Bradley-terry树来发现相对自动框架排名不同的任务子集。基准配备了一个开源工具,该工具与许多自动框架集成并自动化经验评估过程端到端:从框架安装和资源分配到深入评估。基准测试使用公共数据集,可以轻松地使用其他Automl框架和任务扩展,并且具有最新结果的网站。
translated by 谷歌翻译
自成立以来,选择建模领域一直由理论驱动的建模方法主导。机器学习提供了一种用于建模行为的替代数据驱动方法,越来越越来越欣赏我们的领域。机器学习模型的交叉授粉,技术和实践有助于克服当前理论驱动的建模范式中遇到的问题和限制,例如模型选择的主观劳动密集型搜索过程,无法使用文本和图像数据。然而,尽管使用机器学习的进步来改善选择建模实践的潜在好处,但选择建模领域已经犹豫了拥抱机器学习。本讨论文件旨在巩固用于使用机器学习模型,技术和实践的知识,以获得选择建模,并讨论其潜力。因此,我们希望不仅希望在选择建模中进一步集成机器学习的情况是有益的,而且还可以进一步方便。为此,我们澄清了两个建模范式之间的相似性和差异;我们审查了机器学习选择建模;我们探讨了拥抱机器学习模式和技术的机会领域,以改善我们的实践。要结束本讨论文件,我们提出了一系列的研究问题,必须解决,以更好地了解机器学习如何受益选择建模。
translated by 谷歌翻译
超参数优化构成了典型的现代机器学习工作流程的很大一部分。这是由于这样一个事实,即机器学习方法和相应的预处理步骤通常只有在正确调整超参数时就会产生最佳性能。但是在许多应用中,我们不仅有兴趣仅仅为了预测精度而优化ML管道;确定最佳配置时,必须考虑其他指标或约束,从而导致多目标优化问题。由于缺乏知识和用于多目标超参数优化的知识和容易获得的软件实现,因此通常在实践中被忽略。在这项工作中,我们向读者介绍了多个客观超参数优化的基础知识,并激励其在应用ML中的实用性。此外,我们从进化算法和贝叶斯优化的领域提供了现有优化策略的广泛调查。我们说明了MOO在几个特定ML应用中的实用性,考虑了诸如操作条件,预测时间,稀疏,公平,可解释性和鲁棒性之类的目标。
translated by 谷歌翻译
这项工作提供了可靠的nids(R-nids),一种新的机器学习方法(ML)的网络入侵检测系统(NIDS),允许ML模型在集成数据集上工作,从不同数据集中具有不同信息的学习过程。因此,R-NIDS针对更强大的模型的设计,比传统方法更好地概括。我们还提出了一个名为UNK21的新数据集。它是由三个最着名的网络数据集(UGR'16,USNW-NB15和NLS-KDD)构建,每个网络环境收集,使用不同的特征和类,通过使用数据聚合方法R-nids。在r-nids之后,在这项工作中,我们建议基于文献中的三个最常见的数据集的信息来构建两个着名的ML模型(一个线性和非线性的一个),用于NIDS评估中的三个,集成在UNK21中的那些。所提出的方法优惠展示了作为NIDS解决方案训练的两种ML模型的结果可以从这种方法中受益,在新提议的UNK21数据集上培训时能够更好地概括。此外,这些结果用统计工具仔细分析了对我们的结论提供了高度信心的统计工具。
translated by 谷歌翻译
机器学习(ML)提供了在具有较大特征空间和复杂关联的数据中通常在数据中检测和建模关联的强大方法。已经开发了许多有用的工具/软件包(例如Scikit-learn),以使数据处理,处理,建模和解释的各种要素可访问。但是,对于大多数研究人员来说,将这些元素组装成严格,可复制,无偏见和有效的数据分析管道并不是微不足道的。自动化机器学习(AUTOML)试图通过简化所有人的ML分析过程来解决这些问题。在这里,我们介绍了一个简单,透明的端到端汽车管道,设计为一个框架,以轻松进行严格的ML建模和分析(最初限于二进制分类)。 Streamline专门设计用于比较数据集,ML算法和其他AutoML工具之间的性能。通过使用精心设计的一系列管道元素,通过提供完全透明且一致的比较基线,它是独特的,包括:(1)探索性分析,(2)基本数据清洁,(3)交叉验证分区,(4)数据缩放和插补,(5)基于滤波器的特征重要性估计,(6)集体特征选择,(7)通过15个已建立算法的“ Optuna”超参数优化的ML建模(包括较不知名的基因编程和基于规则的ML ),(8)跨16个分类指标的评估,(9)模型特征重要性估计,(10)统计显着性比较,以及(11)自动导出所有结果,图,PDF摘要报告以及可以轻松应用于复制数据。
translated by 谷歌翻译
本文调查了股票回购,特别是分享回购公告。它解决了如何识别此类公告,股票回购的超额回报以及股票回购公告后的回报的预测。我们说明了两种NLP方法,用于自动检测股票回购公告。即使有少量的培训数据,我们也可以达到高达90%的准确性。该论文利用这些NLP方法生成一个由57,155个股票回购公告组成的大数据集。通过分析该数据集,本论文的目的是表明大多数宣布回购的公司的大多数公司都表现不佳。但是,少数公司的表现极大地超过了MSCI世界。当查看所有公司的平均值时,这种重要的表现过高会导致净收益。如果根据公司的规模调整了基准指数,则平均表现过高,并且大多数表现不佳。但是,发现宣布股票回购的公司至少占其市值的1%,即使使用调整后的基准,也平均交付了显着的表现。还发现,在危机时期宣布股票回购的公司比整个市场更好。此外,生成的数据集用于训练72个机器学习模型。通过此,它能够找到许多可以达到高达77%并产生大量超额回报的策略。可以在六个不同的时间范围内改善各种性能指标,并确定明显的表现。这是通过训练多个模型的不同任务和时间范围以及结合这些不同模型的方法来实现的,从而通过融合弱学习者来产生重大改进,以创造一个强大的学习者。
translated by 谷歌翻译
机器学习(ML)应用程序的数据量不断增长。不仅是观察的数量,特别是测量变量的数量(特征)增加了持续的数字化。选择最适合预测建模的功能是ML在商业和研究中取得成功的重要杠杆。特征选择方法(FSM)独立于某种ML算法 - 所谓的过滤方法 - 已毫无意义地建议,但研究人员和定量建模的指导很少,以选择典型ML问题的适当方法。本次审查在特征选择基准上综合了大量文献,并评估了58种方法在广泛使用的R环境中的性能。对于具体的指导,我们考虑了四种典型的数据集方案,这些情况挑战ML模型(嘈杂,冗余,不平衡数据和具有比观察特征更多的案例)。绘制早期基准的经验,该基准测试较少的FSMS,我们根据四个标准进行比较方法的性能(预测性能,所选的相关功能数,功能集和运行时的稳定性)。我们发现依赖于随机森林方法的方法,双输入对称相关滤波器(浪费)和联合杂质滤波器(Jim)是给定的数据集方案的良好性候选方法。
translated by 谷歌翻译
装袋和升压是在机器学习(ml)中的两个流行的集合方法,产生许多单独的决策树。由于这些方法的固有组合特性,它们通常以预测性能更优于单决定树或其他ML模型。然而,为每个决策树生成许多决定路径,增加了模型的整体复杂性,并阻碍了其在需要值得信赖和可解释的决策的域中的域,例如金融,社会护理和保健。因此,随着决策的数量升高,袋装和升降算法(例如随机森林和自适应升压)的解释性降低。在本文中,我们提出了一种视觉分析工具,该工具旨在帮助用户通过彻底的视觉检查工作流程从这种ML模型中提取决策,包括选择一套鲁棒和不同的模型(源自不同的集合学习算法),选择重要的功能根据他们的全球贡献,决定哪些决定对于全球解释(或本地,具体案件)是必不可少的。结果是基于多个模型的协议和用户出口的探索手动决策的最终决定。最后,我们通过用例,使用场景和用户学习评估患者的适用性和有效性。
translated by 谷歌翻译
机器学习(ML)技术在教育方面越来越普遍,从预测学生辍学,到协助大学入学以及促进MOOC的兴起。考虑到这些新颖用途的快速增长,迫切需要调查ML技术如何支持长期以来的教育原则和目标。在这项工作中,我们阐明了这一复杂的景观绘制,以对教育专家的访谈进行定性见解。这些访谈包括对过去十年中著名应用ML会议上发表的ML教育(ML4ED)论文的深入评估。我们的中心研究目标是批判性地研究这些论文的陈述或暗示教育和社会目标如何与他们解决的ML问题保持一致。也就是说,技术问题的提出,目标,方法和解释结果与手头的教育问题保持一致。我们发现,在ML生命周期的两个部分中存在跨学科的差距,并且尤其突出:从教育目标和将预测转换为干预措施的ML问题的提出。我们使用这些见解来提出扩展的ML生命周期,这也可能适用于在其他领域中使用ML。我们的工作加入了越来越多的跨教育和ML研究的荟萃分析研究,以及对ML社会影响的批判性分析。具体而言,它填补了对机器学习的主要技术理解与与学生合作和政策合作的教育研究人员的观点之间的差距。
translated by 谷歌翻译
异构表格数据是最常用的数据形式,对于众多关键和计算要求的应用程序至关重要。在同质数据集上,深度神经网络反复显示出卓越的性能,因此被广泛采用。但是,它们适应了推理或数据生成任务的表格数据仍然具有挑战性。为了促进该领域的进一步进展,这项工作概述了表格数据的最新深度学习方法。我们将这些方法分为三组:数据转换,专业体系结构和正则化模型。对于每个小组,我们的工作提供了主要方法的全面概述。此外,我们讨论了生成表格数据的深度学习方法,并且还提供了有关解释对表格数据的深层模型的策略的概述。因此,我们的第一个贡献是解决上述领域中的主要研究流和现有方法,同时强调相关的挑战和开放研究问题。我们的第二个贡献是在传统的机器学习方法中提供经验比较,并在五个流行的现实世界中的十种深度学习方法中,具有不同规模和不同的学习目标的经验比较。我们已将作为竞争性基准公开提供的结果表明,基于梯度增强的树合奏的算法仍然大多在监督学习任务上超过了深度学习模型,这表明对表格数据的竞争性深度学习模型的研究进度停滞不前。据我们所知,这是对表格数据深度学习方法的第一个深入概述。因此,这项工作可以成为有价值的起点,以指导对使用表格数据深入学习感兴趣的研究人员和从业人员。
translated by 谷歌翻译
尽管机器学习方法已在金融领域广泛使用,但在非常成功的学位上,这些方法仍然可以根据解释性,可比性和可重复性来定制特定研究和不透明。这项研究的主要目的是通过提供一种通用方法来阐明这一领域,该方法是调查 - 不合Snostic且可解释给金融市场从业人员,从而提高了其效率,降低了进入的障碍,并提高了实验的可重复性。提出的方法在两个自动交易平台组件上展示。也就是说,价格水平,众所周知的交易模式和一种新颖的2步特征提取方法。该方法依赖于假设检验,该假设检验在其他社会和科学学科中广泛应用,以有效地评估除简单分类准确性之外的具体结果。提出的主要假设是为了评估所选的交易模式是否适合在机器学习设置中使用。在整个实验中,我们发现在机器学习设置中使用所考虑的交易模式仅由统计数据得到部分支持,从而导致效果尺寸微不足道(反弹7- $ 0.64 \ pm 1.02 $,反弹11 $ 0.38 \ pm 0.98 $,并且篮板15- $ 1.05 \ pm 1.16 $),但允许拒绝零假设。我们展示了美国期货市场工具上的通用方法,并提供了证据表明,通过这种方法,我们可以轻松获得除传统绩效和盈利度指标之外的信息指标。这项工作是最早将这种严格的统计支持方法应用于金融市场领域的工作之一,我们希望这可能是更多研究的跳板。
translated by 谷歌翻译