Computer vision has a great potential to help our daily lives by searching for lost keys, watering flowers or reminding us to take a pill.To succeed with such tasks, computer vision methods need to be trained from real and diverse examples of our daily dynamic scenes. While most of such scenes are not particularly exciting, they typically do not appear on YouTube, in movies or TV broadcasts. So how do we collect sufficiently many diverse but boring samples representing our lives? We propose a novel Hollywood in Homes approach to collect such data. Instead of shooting videos in the lab, we ensure diversity by distributing and crowdsourcing the whole process of video creation from script writing to video recording and annotation. Following this procedure we collect a new dataset, Charades, with hundreds of people recording videos in their own homes, acting out casual everyday activities. The dataset is composed of 9,848 annotated videos with an average length of 30 seconds, showing activities of 267 people from three continents, and over 15% of the videos have more than one person. Each video is annotated by multiple free-text descriptions, action labels, action intervals and classes of interacted objects. In total, Charades provides 27,847 video descriptions, 66,500 temporally localized intervals for 157 action classes and 41,104 labels for 46 object classes. Using this rich data, we evaluate and provide baseline results for several tasks including action recognition and automatic description generation. We believe that the realism, diversity, and casual nature of this dataset will present unique challenges and new opportunities for computer vision community.
translated by 谷歌翻译
In spite of many dataset efforts for human action recognition, current computer vision algorithms are still severely limited in terms of the variability and complexity of the actions that they can recognize. This is in part due to the simplicity of current benchmarks, which mostly focus on simple actions and movements occurring on manually trimmed videos. In this paper we introduce ActivityNet, a new largescale video benchmark for human activity understanding. Our benchmark aims at covering a wide range of complex human activities that are of interest to people in their daily living. In its current version, ActivityNet provides samples from 203 activity classes with an average of 137 untrimmed videos per class and 1.41 activity instances per video, for a total of 849 video hours. We illustrate three scenarios in which ActivityNet can be used to compare algorithms for human activity understanding: untrimmed video classification, trimmed activity classification and activity detection.
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
This paper introduces a video dataset of spatiotemporally localized Atomic Visual Actions (AVA). The AVA dataset densely annotates 80 atomic visual actions in 430 15-minute video clips, where actions are localized in space and time, resulting in 1.58M action labels with multiple labels per person occurring frequently. The key characteristics of our dataset are: (1) the definition of atomic visual actions, rather than composite actions; (2) precise spatio-temporal annotations with possibly multiple annotations for each person; (3) exhaustive annotation of these atomic actions over 15-minute video clips; (4) people temporally linked across consecutive segments; and (5) using movies to gather a varied set of action representations. This departs from existing datasets for spatio-temporal action recognition, which typically provide sparse annotations for composite actions in short video clips.AVA, with its realistic scene and action complexity, exposes the intrinsic difficulty of action recognition. To benchmark this, we present a novel approach for action localization that builds upon the current state-of-the-art methods, and demonstrates better performance on JHMDB and UCF101-24 categories. While setting a new state of the art on existing datasets, the overall results on AVA are low at 15.6% mAP, underscoring the need for developing new approaches for video understanding.
translated by 谷歌翻译
First-person vision is gaining interest as it offers a unique viewpoint on people's interaction with objects, their attention, and even intention. However, progress in this challenging domain has been relatively slow due to the lack of sufficiently large datasets. In this paper, we introduce EPIC-KITCHENS, a large-scale egocentric video benchmark recorded by 32 participants in their native kitchen environments. Our videos depict non-scripted daily activities: we simply asked each participant to start recording every time they entered their kitchen. Recording took place in 4 cities (in North America and Europe) by participants belonging to 10 different nationalities, resulting in highly diverse cooking styles. Our dataset features 55 hours of video consisting of 11.5M frames, which we densely labelled for a total of 39.6K action segments and 454.3K object bounding boxes. Our annotation is unique in that we had the participants narrate their own videos (after recording), thus reflecting true intention, and we crowd-sourced ground-truths based on these. We describe our object, action and anticipation challenges, and evaluate several baselines over two test splits, seen and unseen kitchens.
translated by 谷歌翻译
每天,人类都会执行许多紧密相关的活动,这些活动涉及微妙的判别动作,例如穿衬衫与穿夹克,或握手与给高五个。道德视觉AI的活动识别可以为我们的日常生活模式提供见解,但是现有的活动识别数据集并不能捕捉到世界各地这些人类活动的巨大多样性。为了解决此限制,我们介绍Collector,这是一个免费的移动应用程序,以录制视频,同时注释同意主题的对象和活动。这个新的数据收集平台用于策划People(CAP)数据集的同意活动,这是全球人的第一个大规模,细粒度的活动数据集。 CAP数据集包含145万个日常生活的512个细粒子活动标签的视频片段,由33个国家 /地区的780名受试者收集。我们为该数据集提供活动分类和活动检测基准,并分析基线结果,以深入了解世界周围人如何进行共同活动。可以在visym.github.io/cap上使用数据集,基准,评估工具,公共排行榜和移动应用程序。
translated by 谷歌翻译
Neural networks trained on datasets such as ImageNet have led to major advances in visual object classification. One obstacle that prevents networks from reasoning more deeply about complex scenes and situations, and from integrating visual knowledge with natural language, like humans do, is their lack of common sense knowledge about the physical world. Videos, unlike still images, contain a wealth of detailed information about the physical world. However, most labelled video datasets represent high-level concepts rather than detailed physical aspects about actions and scenes. In this work, we describe our ongoing collection of the "something-something" database of video prediction tasks whose solutions require a common sense understanding of the depicted situation. The database currently contains more than 100,000 videos across 174 classes, which are defined as caption-templates. We also describe the challenges in crowd-sourcing this data at scale.
translated by 谷歌翻译
设计可以成功部署在日常生活环境中的活动检测系统需要构成现实情况典型挑战的数据集。在本文中,我们介绍了一个新的未修剪日常生存数据集,该数据集具有几个现实世界中的挑战:Toyota Smarthome Untrimmed(TSU)。 TSU包含以自发方式进行的各种活动。数据集包含密集的注释,包括基本的,复合活动和涉及与对象相互作用的活动。我们提供了对数据集所需的现实世界挑战的分析,突出了检测算法的开放问题。我们表明,当前的最新方法无法在TSU数据集上实现令人满意的性能。因此,我们提出了一种新的基线方法,以应对数据集提供的新挑战。此方法利用一种模态(即视线流)生成注意力权重,以指导另一种模态(即RGB)以更好地检测活动边界。这对于检测以高时间差异为特征的活动特别有益。我们表明,我们建议在TSU和另一个受欢迎的挑战数据集Charades上优于最先进方法的方法。
translated by 谷歌翻译
While there has been increasing interest in the task of describing video with natural language, current computer vision algorithms are still severely limited in terms of the variability and complexity of the videos and their associated language that they can recognize. This is in part due to the simplicity of current benchmarks, which mostly focus on specific fine-grained domains with limited videos and simple descriptions. While researchers have provided several benchmark datasets for image captioning, we are not aware of any large-scale video description dataset with comprehensive categories yet diverse video content.In this paper we present MSR-VTT (standing for "MSR-Video to Text") which is a new large-scale video benchmark for video understanding, especially the emerging task of translating video to text. This is achieved by collecting 257 popular queries from a commercial video search engine, with 118 videos for each query. In its current version, MSR-VTT provides 10K web video clips with 41.2 hours and 200K clip-sentence pairs in total, covering the most comprehensive categories and diverse visual content, and representing the largest dataset in terms of sentence and vocabulary. Each clip is annotated with about 20 natural sentences by 1,327 AMT workers. We present a detailed analysis of MSR-VTT in comparison to a complete set of existing datasets, together with a summarization of different state-of-the-art video-to-text approaches. We also provide an extensive evaluation of these approaches on this dataset, showing that the hybrid Recurrent Neural Networkbased approach, which combines single-frame and motion representations with soft-attention pooling strategy, yields the best generalization capability on MSR-VTT.
translated by 谷歌翻译
Most natural videos contain numerous events. For example, in a video of a "man playing a piano", the video might also contain "another man dancing" or "a crowd clapping". We introduce the task of dense-captioning events, which involves both detecting and describing events in a video. We propose a new model that is able to identify all events in a single pass of the video while simultaneously describing the detected events with natural language. Our model introduces a variant of an existing proposal module that is designed to capture both short as well as long events that span minutes. To capture the dependencies between the events in a video, our model introduces a new captioning module that uses contextual information from past and future events to jointly describe all events. We also introduce ActivityNet Captions, a large-scale benchmark for dense-captioning events. ActivityNet Captions contains 20k videos amounting to 849 video hours with 100k total descriptions, each with it's unique start and end time. Finally, we report performances of our model for dense-captioning events, video retrieval and localization.
translated by 谷歌翻译
The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach nearhuman semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems.
translated by 谷歌翻译
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
translated by 谷歌翻译
Learning text-video embeddings usually requires a dataset of video clips with manually provided captions. However, such datasets are expensive and time consuming to create and therefore difficult to obtain on a large scale. In this work, we propose instead to learn such embeddings from video data with readily available natural language annotations in the form of automatically transcribed narrations. The contributions of this work are three-fold. First, we introduce HowTo100M: a large-scale dataset of 136 million video clips sourced from 1.22M narrated instructional web videos depicting humans performing and describing over 23k different visual tasks. Our data collection procedure is fast, scalable and does not require any additional manual annotation. Second, we demonstrate that a text-video embedding trained on this data leads to state-ofthe-art results for text-to-video retrieval and action localization on instructional video datasets such as YouCook2 or CrossTask. Finally, we show that this embedding transfers well to other domains: fine-tuning on generic Youtube videos (MSR-VTT dataset) and movies (LSMDC dataset) outperforms models trained on these datasets alone. Our dataset, code and models are publicly available [1]. * Equal contribution.
translated by 谷歌翻译
Visual understanding goes well beyond object recognition. With one glance at an image, we can effortlessly imagine the world beyond the pixels: for instance, we can infer people's actions, goals, and mental states. While this task is easy for humans, it is tremendously difficult for today's vision systems, requiring higher-order cognition and commonsense reasoning about the world. We formalize this task as Visual Commonsense Reasoning. Given a challenging question about an image, a machine must answer correctly and then provide a rationale justifying its answer.Next, we introduce a new dataset, VCR, consisting of 290k multiple choice QA problems derived from 110k movie scenes. The key recipe for generating non-trivial and highquality problems at scale is Adversarial Matching, a new approach to transform rich annotations into multiple choice questions with minimal bias. Experimental results show that while humans find VCR easy (over 90% accuracy), state-of-the-art vision models struggle (∼45%).To move towards cognition-level understanding, we present a new reasoning engine, Recognition to Cognition Networks (R2C), that models the necessary layered inferences for grounding, contextualization, and reasoning. R2C helps narrow the gap between humans and machines (∼65%); still, the challenge is far from solved, and we provide analysis that suggests avenues for future work.
translated by 谷歌翻译
室内场景识别是一种不断增长的领域,具有巨大的行为理解,机器人本地化和老年人监测等。在这项研究中,我们使用从社交媒体收集的多模态学习和视频数据来从新的角度来看场景识别的任务。社交媒体视频的可访问性和各种可以为现代场景识别技术和应用提供现实数据。我们提出了一种基于转录语音的融合到文本和视觉功能的模型,用于在名为Instaindoor的室内场景的社交媒体视频的新型数据集上进行分类。我们的模型可实现高达70%的精度和0.7 F1分数。此外,我们通过在室内场景的YouTube-8M子集上基准测试,我们突出了我们的方法的潜力,在那里它达到了74%的精度和0.74f1分数。我们希望这项工作的贡献铺平了在挑战领域的室内场景认可领域的新型研究。
translated by 谷歌翻译
The Flickr30k dataset has become a standard benchmark for sentence-based image description. This paper presents Flickr30k Entities, which augments the 158k captions from Flickr30k with 244k coreference chains, linking mentions of the same entities across different captions for the same image, and associating them with 276k manually annotated bounding boxes. Such annotations are essential for continued progress in automatic image description and grounded language understanding. They enable us to define a new benchmark for localization of textual entity mentions in an image. We present a strong baseline for this task that combines an image-text embedding, detectors for common objects, a color classifier, and a bias towards selecting larger objects. While our baseline rivals in accuracy more complex state-of-the-art models, we show that its gains cannot be easily parlayed into improvements on such tasks as image-sentence retrieval, thus underlining the limitations of current methods and the need for further research.
translated by 谷歌翻译
Can we teach a robot to recognize and make predictions for activities that it has never seen before? We tackle this problem by learning models for video from text. This paper presents a hierarchical model that generalizes instructional knowledge from large-scale text corpora and transfers the knowledge to video. Given a portion of an instructional video, our model recognizes and predicts coherent and plausible actions multiple steps into the future, all in rich natural language. To demonstrate the capabilities of our model, we introduce the \emph{Tasty Videos Dataset V2}, a collection of 4022 recipes for zero-shot learning, recognition and anticipation. Extensive experiments with various evaluation metrics demonstrate the potential of our method for generalization, given limited video data for training models.
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
We propose the task of free-form and open-ended Visual Question Answering (VQA). Given an image and a natural language question about the image, the task is to provide an accurate natural language answer. Mirroring real-world scenarios, such as helping the visually impaired, both the questions and answers are open-ended. Visual questions selectively target different areas of an image, including background details and underlying context. As a result, a system that succeeds at VQA typically needs a more detailed understanding of the image and complex reasoning than a system producing generic image captions. Moreover, VQA is amenable to automatic evaluation, since many open-ended answers contain only a few words or a closed set of answers that can be provided in a multiple-choice format. We provide a dataset containing ∼0.25M images, ∼0.76M questions, and ∼10M answers (www.visualqa.org), and discuss the information it provides. Numerous baselines and methods for VQA are provided and compared with human performance. Our VQA demo is available on CloudCV (http://cloudcv.org/vqa).
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译