The rise of multi-million-item dataset initiatives has enabled data-hungry machine learning algorithms to reach nearhuman semantic classification performance at tasks such as visual object and scene recognition. Here we describe the Places Database, a repository of 10 million scene photographs, labeled with scene semantic categories, comprising a large and diverse list of the types of environments encountered in the world. Using the state-of-the-art Convolutional Neural Networks (CNNs), we provide scene classification CNNs (Places-CNNs) as baselines, that significantly outperform the previous approaches. Visualization of the CNNs trained on Places shows that object detectors emerge as an intermediate representation of scene classification. With its high-coverage and high-diversity of exemplars, the Places Database along with the Places-CNNs offer a novel resource to guide future progress on scene recognition problems.
translated by 谷歌翻译
Scene recognition is one of the hallmark tasks of computer vision, allowing definition of a context for object recognition. Whereas the tremendous recent progress in object recognition tasks is due to the availability of large datasets like ImageNet and the rise of Convolutional Neural Networks (CNNs) for learning high-level features, performance at scene recognition has not attained the same level of success. This may be because current deep features trained from ImageNet are not competitive enough for such tasks. Here, we introduce a new scene-centric database called Places with over 7 million labeled pictures of scenes. We propose new methods to compare the density and diversity of image datasets and show that Places is as dense as other scene datasets and has more diversity. Using CNN, we learn deep features for scene recognition tasks, and establish new state-of-the-art results on several scene-centric datasets. A visualization of the CNN layers' responses allows us to show differences in the internal representations of object-centric and scene-centric networks.
translated by 谷歌翻译
Semantic understanding of visual scenes is one of the holy grails of computer vision. Despite efforts of the community in data collection, there are still few image datasets covering a wide range of scenes and object categories with pixel-wise annotations for scene understanding. In this work, we present a densely annotated dataset ADE20K, which spans diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. Totally there are 25k images of the complex everyday scenes containing a variety of objects in their natural spatial context. On average there are 19.5 instances and 10.5 object classes per image. Based on ADE20K, we construct benchmarks for scene parsing and instance segmentation. We provide baseline performances on both of the benchmarks and re-implement the state-ofthe-art models for open source. We further evaluate the effect of synchronized batch normalization and find that a reasonably large batch size is crucial for the semantic segmentation performance. We show that the networks trained on ADE20K are able to segment a wide variety of scenes and objects 1 .
translated by 谷歌翻译
We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance segmentations to aid in precise object localization. Our dataset contains photos of 91 objects types that would be easily recognizable by a 4 year old. With a total of 2.5 million labeled instances in 328k images, the creation of our dataset drew upon extensive crowd worker involvement via novel user interfaces for category detection, instance spotting and instance segmentation. We present a detailed statistical analysis of the dataset in comparison to PASCAL, ImageNet, and SUN. Finally, we provide baseline performance analysis for bounding box and segmentation detection results using a Deformable Parts Model.
translated by 谷歌翻译
The ImageNet Large Scale Visual Recognition Challenge is a benchmark in object category classification and detection on hundreds of object categories and millions of images. The challenge has been run annually from 2010 to present, attracting participation from more than fifty institutions. This paper describes the creation of this benchmark dataset and the advances in object recognition that have been possible as a result. We discuss the chal-
translated by 谷歌翻译
Scene parsing, or recognizing and segmenting objects and stuff in an image, is one of the key problems in computer vision. Despite the community's efforts in data collection, there are still few image datasets covering a wide range of scenes and object categories with dense and detailed annotations for scene parsing. In this paper, we introduce and analyze the ADE20K dataset, spanning diverse annotations of scenes, objects, parts of objects, and in some cases even parts of parts. A scene parsing benchmark is built upon the ADE20K with 150 object and stuff classes included. Several segmentation baseline models are evaluated on the benchmark. A novel network design called Cascade Segmentation Module is proposed to parse a scene into stuff, objects, and object parts in a cascade and improve over the baselines. We further show that the trained scene parsing networks can lead to applications such as image content removal and scene synthesis 1 .
translated by 谷歌翻译
Scene categorization is a fundamental problem in computer vision. However, scene understanding research has been constrained by the limited scope of currently-used databases which do not capture the full variety of scene categories. Whereas standard databases for object categorization contain hundreds of different classes of objects, the largest available dataset of scene categories contains only 15 classes. In this paper we propose the extensive Scene UNderstanding (SUN) database that contains 899 categories and 130,519 images. We use 397 well-sampled categories to evaluate numerous state-of-the-art algorithms for scene recognition and establish new bounds of performance. We measure human scene classification performance on the SUN database and compare this with computational methods. Additionally, we study a finer-grained scene representation to detect scenes embedded inside of larger scenes.
translated by 谷歌翻译
Despite progress in perceptual tasks such as image classification, computers still perform poorly on cognitive tasks such as image description and question answering. Cognition is core to tasks that involve not just recognizing, but reasoning about our visual world. However, models used to tackle the rich content in images for cognitive tasks are still being trained using the same datasets designed for perceptual tasks. To achieve success at cognitive tasks, models need to understand the interactions and relationships between objects in
translated by 谷歌翻译
In this work, we revisit the global average pooling layer proposed in [13], and shed light on how it explicitly enables the convolutional neural network to have remarkable localization ability despite being trained on image-level labels. While this technique was previously proposed as a means for regularizing training, we find that it actually builds a generic localizable deep representation that can be applied to a variety of tasks. Despite the apparent simplicity of global average pooling, we are able to achieve 37.1% top-5 error for object localization on ILSVRC 2014, which is remarkably close to the 34.2% top-5 error achieved by a fully supervised CNN approach. We demonstrate that our network is able to localize the discriminative image regions on a variety of tasks despite not being trained for them.
translated by 谷歌翻译
We propose a general framework called Network Dissection for quantifying the interpretability of latent representations of CNNs by evaluating the alignment between individual hidden units and a set of semantic concepts. Given any CNN model, the proposed method draws on a broad data set of visual concepts to score the semantics of hidden units at each intermediate convolutional layer. The units with semantics are given labels across a range of objects, parts, scenes, textures, materials, and colors. We use the proposed method to test the hypothesis that interpretability of units is equivalent to random linear combinations of units, then we apply our method to compare the latent representations of various networks when trained to solve different supervised and self-supervised training tasks. We further analyze the effect of training iterations, compare networks trained with different initializations, examine the impact of network depth and width, and measure the effect of dropout and batch normalization on the interpretability of deep visual representations. We demonstrate that the proposed method can shed light on characteristics of CNN models and training methods that go beyond measurements of their discriminative power.
translated by 谷歌翻译
We build new test sets for the CIFAR-10 and ImageNet datasets. Both benchmarks have been the focus of intense research for almost a decade, raising the danger of overfitting to excessively re-used test sets. By closely following the original dataset creation processes, we test to what extent current classification models generalize to new data. We evaluate a broad range of models and find accuracy drops of 3% -15% on CIFAR-10 and 11% -14% on ImageNet. However, accuracy gains on the original test sets translate to larger gains on the new test sets. Our results suggest that the accuracy drops are not caused by adaptivity, but by the models' inability to generalize to slightly "harder" images than those found in the original test sets.
translated by 谷歌翻译
The PASCAL Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection.This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.
translated by 谷歌翻译
场景分类已确定为一个具有挑战性的研究问题。与单个对象的图像相比,场景图像在语义上可能更为复杂和抽象。它们的差异主要在于识别的粒度水平。然而,图像识别是场景识别良好表现的关键支柱,因为从对象图像中获得的知识可用于准确识别场景。现有场景识别方法仅考虑场景的类别标签。但是,我们发现包含详细的本地描述的上下文信息也有助于允许场景识别模型更具歧视性。在本文中,我们旨在使用对象中编码的属性和类别标签信息来改善场景识别。基于属性和类别标签的互补性,我们提出了一个多任务属性识别识别(MASR)网络,该网络学习一个类别嵌入式,同时预测场景属性。属性采集和对象注释是乏味且耗时的任务。我们通过提出部分监督的注释策略来解决该问题,其中人类干预大大减少。该策略为现实世界情景提供了更具成本效益的解决方案,并且需要减少注释工作。此外,考虑到对象检测到的分数所指示的重要性水平,我们重新进行了权威预测。使用提出的方法,我们有效地注释了四个大型数据集的属性标签,并系统地研究场景和属性识别如何相互受益。实验结果表明,与最先进的方法相比
translated by 谷歌翻译
Recent results indicate that the generic descriptors extracted from the convolutional neural networks are very powerful. This paper adds to the mounting evidence that this is indeed the case. We report on a series of experiments conducted for different recognition tasks using the publicly available code and model of the OverFeat network which was trained to perform object classification on ILSVRC13. We use features extracted from the OverFeat network as a generic image representation to tackle the diverse range of recognition tasks of object image classification, scene recognition, fine grained recognition, attribute detection and image retrieval applied to a diverse set of datasets. We selected these tasks and datasets as they gradually move further away from the original task and data the OverFeat network was trained to solve. Astonishingly, we report consistent superior results compared to the highly tuned state-of-the-art systems in all the visual classification tasks on various datasets. For instance retrieval it consistently outperforms low memory footprint methods except for sculptures dataset. The results are achieved using a linear SVM classifier (or L2 distance in case of retrieval) applied to a feature representation of size 4096 extracted from a layer in the net. The representations are further modified using simple augmentation techniques e.g. jittering. The results strongly suggest that features obtained from deep learning with convolutional nets should be the primary candidate in most visual recognition tasks.
translated by 谷歌翻译
令人难忘性测量在闪光后将容易记忆的难忘,这可能有助于设计杂志盖板,旅游宣传材料等。最近的作品对令人难忘的通用图像,对象图像或面部照片的可视化功能。然而,这些方法不能有效地预测户外自然场景图像的令人难忘性。为了克服以前作品的这种缺点,在本文中,我们提供了回答:“究竟是什么让户外自然场景令人难忘的东西”。为此,我们首先建立大规模的户外自然场景图像难忘(LNSIM)数据库,其中包含2,632个户外自然场景图像,其基础令人难忘分数和多标签场景类别注释。然后,类似于以前的作品,我们挖掘了我们的数据库,调查了如何影响户外自然场景的令人难忘程度,中高水平和高水平的手工业。特别是,我们发现场景类别的高级特征与户外自然场景难忘相当相关,深神经网络(DNN)学习的深度特征在预测令人难忘分数方面也是有效的。此外,将具有类别特征的深度特征组合可以进一步提高难忘预测的性能。因此,我们提出了基于端到端的DNN的户外自然场景难忘(DeepnSM)预测器,其利用了学习的类别相关的特征。然后,实验结果验证了我们深度的模型的有效性,超出了最先进的方法。最后,我们试图了解我们Deepnsm模型的良好表现的原因,并研究了我们的Deepnsm模型成功或未能准确预测户外自然场景的令人难忘的情况。代码:github.com/jiaxinlu-home/natural-cene-memorability-dataset。
translated by 谷歌翻译
Given a grayscale photograph as input, this paper attacks the problem of hallucinating a plausible color version of the photograph. This problem is clearly underconstrained, so previous approaches have either relied on significant user interaction or resulted in desaturated colorizations. We propose a fully automatic approach that produces vibrant and realistic colorizations. We embrace the underlying uncertainty of the problem by posing it as a classification task and use class-rebalancing at training time to increase the diversity of colors in the result. The system is implemented as a feed-forward pass in a CNN at test time and is trained on over a million color images. We evaluate our algorithm using a "colorization Turing test," asking human participants to choose between a generated and ground truth color image. Our method successfully fools humans on 32% of the trials, significantly higher than previous methods. Moreover, we show that colorization can be a powerful pretext task for self-supervised feature learning, acting as a cross-channel encoder. This approach results in state-of-the-art performance on several feature learning benchmarks.
translated by 谷歌翻译
我们介绍了遮阳板,一个新的像素注释的新数据集和一个基准套件,用于在以自我为中心的视频中分割手和活动对象。遮阳板注释Epic-kitchens的视频,其中带有当前视频分割数据集中未遇到的新挑战。具体而言,我们需要确保像素级注释作为对象经历变革性相互作用的短期和长期一致性,例如洋葱被剥皮,切成丁和煮熟 - 我们旨在获得果皮,洋葱块,斩波板,刀,锅以及表演手的准确像素级注释。遮阳板引入了一条注释管道,以零件为ai驱动,以进行可伸缩性和质量。总共,我们公开发布257个对象类的272K手册语义面具,990万个插值密集口罩,67K手动关系,涵盖36小时的179个未修剪视频。除了注释外,我们还引入了视频对象细分,互动理解和长期推理方面的三个挑战。有关数据,代码和排行榜:http://epic-kitchens.github.io/visor
translated by 谷歌翻译
Progress on object detection is enabled by datasets that focus the research community's attention on open challenges. This process led us from simple images to complex scenes and from bounding boxes to segmentation masks. In this work, we introduce LVIS (pronounced 'el-vis'): a new dataset for Large Vocabulary Instance Segmentation. We plan to collect ∼2 million high-quality instance segmentation masks for over 1000 entry-level object categories in 164k images. Due to the Zipfian distribution of categories in natural images, LVIS naturally has a long tail of categories with few training samples. Given that state-of-the-art deep learning methods for object detection perform poorly in the low-sample regime, we believe that our dataset poses an important and exciting new scientific challenge. LVIS is available at http://www.lvisdataset.org.
translated by 谷歌翻译
当地球经历全球变暖时,自然灾害,如洪水,龙卷风或野火,越来越普遍普遍。很难预测事件的何时何时会发生,所以及时的应急响应对于拯救受破坏事件危害的人的生命至关重要。幸运的是,技术可以在这些情况下发挥作用。社交媒体帖子可以用作低延迟数据源来了解灾难的进展和后果,但解析此数据无需自动化方法。在前的工作主要集中在基于文本的过滤,但基于图像和基于视频的过滤仍然很大程度上是未开发的。在这项工作中,我们介绍了一个大规模的多标签数据集,其中包含977,088个图像,43个事件和49个地方。我们提供数据集建设,统计和潜在偏差的详细信息;介绍和训练事件检测模型;在Flickr和Twitter上为数百万图像进行图像过滤实验。我们还提出了一些关于事件分析的申请,以鼓励和使未来的人道主义援助中的计算机愿景工作。代码,数据和模型可在http://incidentsdataset.csail.mit.edu上获得。
translated by 谷歌翻译
Image segmentation is a key topic in image processing and computer vision with applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among many others. Various algorithms for image segmentation have been developed in the literature. Recently, due to the success of deep learning models in a wide range of vision applications, there has been a substantial amount of works aimed at developing image segmentation approaches using deep learning models. In this survey, we provide a comprehensive review of the literature at the time of this writing, covering a broad spectrum of pioneering works for semantic and instance-level segmentation, including fully convolutional pixel-labeling networks, encoder-decoder architectures, multi-scale and pyramid based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the similarity, strengths and challenges of these deep learning models, examine the most widely used datasets, report performances, and discuss promising future research directions in this area.
translated by 谷歌翻译