倦怠是影响近一半医疗工作者的重大公共卫生问题。本文介绍了基于电子健康记录(EHR)活动日志的医师倦怠的第一个端到端深度学习框架,即任何EHR系统中可用的医师工作活动的数字痕迹。与仅依靠调查进行倦怠测量的先前方法相反,我们的框架直接从大规模的临床医生活动日志中了解了医师行为的深刻表示,以预测倦怠。我们提出了基于活动日志(HIPAL)的层次结构预测,该预测具有预先训练的时间依赖时间的活动嵌入机制,适用于活动日志和分层预测模型,该模型反映了临床医生活动日志的自然等级结构,并捕获了医生的演化。短期和长期水平的倦怠风险。为了利用大量未标记的活动日志,我们提出了一个半监督的框架,该框架学会了将从未标记的临床医生活动中提取的知识转移到基于HIPAL的预测模型中。从EHR收集的1500万个临床医生活动日志的实验证明了我们提出的框架在医师倦怠和培训效率方面的预测框架比最先进的方法的优势。
translated by 谷歌翻译
我们提出了一种使用流生理时间序列的端到端模型,以准确预测低氧血症的近期风险,低氧血症是一种罕见但威胁生命的疾病,已知在手术期间造成严重的患者伤害。受到以下事实的启发:低氧血症事件是根据未来观察到的低spo2(即血氧饱和度)实例定义的,我们提出的模型使对未来的低spo2实例和低氧血症结果的混合推断,并由关节序列启用同时优化标签预测的判别解码器的自动编码器,以及对数据重建和预测进行了培训的两个辅助解码器,它们无缝地学习上下文的潜在表示,这些表示捕获了当前状态之间的过渡到未来状态。所有解码器都共享一个基于内存的编码器,有助于捕获患者测量的全局动态。对于一个主要的学术医学中心进行了72,081次手术的大型手术队列,我们​​的模型优于所有基础,包括最先进的低氧预测系统使用的模型。能够以临床上可接受的警报对近期低氧事件的警报进行分辨率的实时预测,尤其是更关键的持续性低氧血症,我们提出的模型在改善临床决策和减轻围手术期的减轻负担方面有希望。
translated by 谷歌翻译
Time series anomaly detection has applications in a wide range of research fields and applications, including manufacturing and healthcare. The presence of anomalies can indicate novel or unexpected events, such as production faults, system defects, or heart fluttering, and is therefore of particular interest. The large size and complex patterns of time series have led researchers to develop specialised deep learning models for detecting anomalous patterns. This survey focuses on providing structured and comprehensive state-of-the-art time series anomaly detection models through the use of deep learning. It providing a taxonomy based on the factors that divide anomaly detection models into different categories. Aside from describing the basic anomaly detection technique for each category, the advantages and limitations are also discussed. Furthermore, this study includes examples of deep anomaly detection in time series across various application domains in recent years. It finally summarises open issues in research and challenges faced while adopting deep anomaly detection models.
translated by 谷歌翻译
Health sensing for chronic disease management creates immense benefits for social welfare. Existing health sensing studies primarily focus on the prediction of physical chronic diseases. Depression, a widespread complication of chronic diseases, is however understudied. We draw on the medical literature to support depression prediction using motion sensor data. To connect human expertise in the decision-making, safeguard trust for this high-stake prediction, and ensure algorithm transparency, we develop an interpretable deep learning model: Temporal Prototype Network (TempPNet). TempPNet is built upon the emergent prototype learning models. To accommodate the temporal characteristic of sensor data and the progressive property of depression, TempPNet differs from existing prototype learning models in its capability of capturing the temporal progression of depression. Extensive empirical analyses using real-world motion sensor data show that TempPNet outperforms state-of-the-art benchmarks in depression prediction. Moreover, TempPNet interprets its predictions by visualizing the temporal progression of depression and its corresponding symptoms detected from sensor data. We further conduct a user study to demonstrate its superiority over the benchmarks in interpretability. This study offers an algorithmic solution for impactful social good - collaborative care of chronic diseases and depression in health sensing. Methodologically, it contributes to extant literature with a novel interpretable deep learning model for depression prediction from sensor data. Patients, doctors, and caregivers can deploy our model on mobile devices to monitor patients' depression risks in real-time. Our model's interpretability also allows human experts to participate in the decision-making by reviewing the interpretation of prediction outcomes and making informed interventions.
translated by 谷歌翻译
深度学习属于人工智能领域,机器执行通常需要某种人类智能的任务。类似于大脑的基本结构,深度学习算法包括一种人工神经网络,其类似于生物脑结构。利用他们的感官模仿人类的学习过程,深入学习网络被送入(感官)数据,如文本,图像,视频或声音。这些网络在不同的任务中优于最先进的方法,因此,整个领域在过去几年中看到了指数增长。这种增长在过去几年中每年超过10,000多种出版物。例如,只有在医疗领域中的所有出版物中覆盖的搜索引擎只能在Q3 2020中覆盖所有出版物的子集,用于搜索术语“深度学习”,其中大约90%来自过去三年。因此,对深度学习领域的完全概述已经不可能在不久的将来获得,并且在不久的将来可能会难以获得难以获得子场的概要。但是,有几个关于深度学习的综述文章,这些文章专注于特定的科学领域或应用程序,例如计算机愿景的深度学习进步或在物体检测等特定任务中进行。随着这些调查作为基础,这一贡献的目的是提供对不同科学学科的深度学习的第一个高级,分类的元调查。根据底层数据来源(图像,语言,医疗,混合)选择了类别(计算机愿景,语言处理,医疗信息和其他工程)。此外,我们还审查了每个子类别的常见架构,方法,专业,利弊,评估,挑战和未来方向。
translated by 谷歌翻译
传统机器学习方法面临两种主要挑战,在处理医疗保健预测分析任务方面。首先,医疗保健数据的高维性质需要劳动密集型和耗时的过程,为每项新任务选择适当的功能集。其次,这些方法依赖于特征工程来捕获患者数据的顺序性,这可能无法充分利用医疗事件的时间模式及其依赖性。最近的深度学习方法通​​过解决医疗数据的高维和时间挑战,对各种医疗保健预测任务显示了有希望的性能。这些方法可以学习关键因素(例如,医学概念或患者)的有用表示及其与高维原始或最低处理的医疗保健数据的相互作用。在本文中,我们系统地审查了专注于推进和使用深神经网络的研究,以利用患者结构化时间序列数据进行医疗保健预测任务。为了识别相关研究,搜索MEDLINE,IEEE,SCOPUS和ACM数字图书馆于2021年2月7日出版的研究。我们发现研究人员在十个研究流中为深度时间序列预测文献做出了贡献:深入学习模型,缺少价值处理,不规则处理,患者表示,静态数据包容,关注机制,解释,纳入医疗本体,学习策略和可扩展性。本研究总结了这些文献流的研究见解,确定了几个关键研究差距,并提出了未来的患者时间序列数据深入学习的研究机会。
translated by 谷歌翻译
基于电子健康记录(EHR)的健康预测建筑模型已成为一个活跃的研究领域。 EHR患者旅程数据由患者定期的临床事件/患者访问组成。大多数现有研究的重点是建模访问之间的长期依赖性,而无需明确考虑连续访问之间的短期相关性,在这种情况下,将不规则的时间间隔(并入为辅助信息)被送入健康预测模型中以捕获患者期间的潜在渐进模式。 。我们提出了一个具有四个模块的新型深神经网络,以考虑各种变量对健康预测的贡献:i)堆叠的注意力模块在每个患者旅程中加强了临床事件中的深层语义,并产生访问嵌入,ii)短 - 术语时间关注模块模型在连续访问嵌入之间的短期相关性,同时捕获这些访问嵌入中时间间隔的影响,iii)长期时间关注模块模型的长期依赖模型,同时捕获时间间隔内的时间间隔的影响这些访问嵌入,iv),最后,耦合的注意模块适应了短期时间关注和长期时间注意模块的输出,以做出健康预测。对模拟III的实验结果表明,与现有的最新方法相比,我们的模型的预测准确性以及该方法的可解释性和鲁棒性。此外,我们发现建模短期相关性有助于局部先验的产生,从而改善了患者旅行的预测性建模。
translated by 谷歌翻译
人类行动识别是计算机视觉中的重要应用领域。它的主要目的是准确地描述人类的行为及其相互作用,从传感器获得的先前看不见的数据序列中。识别,理解和预测复杂人类行动的能力能够构建许多重要的应用,例如智能监视系统,人力计算机界面,医疗保健,安全和军事应用。近年来,计算机视觉社区特别关注深度学习。本文使用深度学习技术的视频分析概述了当前的动作识别最新识别。我们提出了识别人类行为的最重要的深度学习模型,并分析它们,以提供用于解决人类行动识别问题的深度学习算法的当前进展,以突出其优势和缺点。基于文献中报道的识别精度的定量分析,我们的研究确定了动作识别中最新的深层体系结构,然后为该领域的未来工作提供当前的趋势和开放问题。
translated by 谷歌翻译
Recent research has demonstrated the capability of behavior signals captured by smartphones and wearables for longitudinal behavior modeling. However, there is a lack of a comprehensive public dataset that serves as an open testbed for fair comparison among algorithms. Moreover, prior studies mainly evaluate algorithms using data from a single population within a short period, without measuring the cross-dataset generalizability of these algorithms. We present the first multi-year passive sensing datasets, containing over 700 user-years and 497 unique users' data collected from mobile and wearable sensors, together with a wide range of well-being metrics. Our datasets can support multiple cross-dataset evaluations of behavior modeling algorithms' generalizability across different users and years. As a starting point, we provide the benchmark results of 18 algorithms on the task of depression detection. Our results indicate that both prior depression detection algorithms and domain generalization techniques show potential but need further research to achieve adequate cross-dataset generalizability. We envision our multi-year datasets can support the ML community in developing generalizable longitudinal behavior modeling algorithms.
translated by 谷歌翻译
Predicting the health risks of patients using Electronic Health Records (EHR) has attracted considerable attention in recent years, especially with the development of deep learning techniques. Health risk refers to the probability of the occurrence of a specific health outcome for a specific patient. The predicted risks can be used to support decision-making by healthcare professionals. EHRs are structured patient journey data. Each patient journey contains a chronological set of clinical events, and within each clinical event, there is a set of clinical/medical activities. Due to variations of patient conditions and treatment needs, EHR patient journey data has an inherently high degree of missingness that contains important information affecting relationships among variables, including time. Existing deep learning-based models generate imputed values for missing values when learning the relationships. However, imputed data in EHR patient journey data may distort the clinical meaning of the original EHR patient journey data, resulting in classification bias. This paper proposes a novel end-to-end approach to modeling EHR patient journey data with Integrated Convolutional and Recurrent Neural Networks. Our model can capture both long- and short-term temporal patterns within each patient journey and effectively handle the high degree of missingness in EHR data without any imputation data generation. Extensive experimental results using the proposed model on two real-world datasets demonstrate robust performance as well as superior prediction accuracy compared to existing state-of-the-art imputation-based prediction methods.
translated by 谷歌翻译
Time Series Classification (TSC) is an important and challenging problem in data mining. With the increase of time series data availability, hundreds of TSC algorithms have been proposed. Among these methods, only a few have considered Deep Neural Networks (DNNs) to perform this task. This is surprising as deep learning has seen very successful applications in the last years. DNNs have indeed revolutionized the field of computer vision especially with the advent of novel deeper architectures such as Residual and Convolutional Neural Networks. Apart from images, sequential data such as text and audio can also be processed with DNNs to reach state-of-the-art performance for document classification and speech recognition. In this article, we study the current state-ofthe-art performance of deep learning algorithms for TSC by presenting an empirical study of the most recent DNN architectures for TSC. We give an overview of the most successful deep learning applications in various time series domains under a unified taxonomy of DNNs for TSC. We also provide an open source deep learning framework to the TSC community where we implemented each of the compared approaches and evaluated them on a univariate TSC benchmark (the UCR/UEA archive) and 12 multivariate time series datasets. By training 8,730 deep learning models on 97 time series datasets, we propose the most exhaustive study of DNNs for TSC to date.
translated by 谷歌翻译
生态瞬间评估(EMAS)是用于测量移动卫生(MHECHEATH)研究和治疗方案的当前认知状态,影响,行为和环境因素的重要心理数据源。非反应,其中参与者未能响应EMA提示,是一个地方问题。准确预测非响应的能力可用于改善EMA交付和发展顺应性干预。事先工作已经探索了古典机器学习模型,以预测非反应。然而,正如越来越大的EMA数据集可用,有可能利用在其他领域有效的深度学习模型。最近,变压器模型在NLP和其他域中显示了最先进的性能。这项工作是第一个探索用于EMA数据分析的变压器的使用。我们在将变压器应用于EMA数据时解决了三个关键问题:1。输入表示,2.编码时间信息,3.预先培训提高下游预测任务性能的效用。变压器模型实现了0.77的非响应预测AUC,并且明显优于古典ML和基于LSTM的深度学习模型。我们将使我们的一个预测模型在研究界可自由地提供40k EMA样品的核查,以便于开发未来的基于变压器的EMA分析工作。
translated by 谷歌翻译
As ride-hailing services become increasingly popular, being able to accurately predict demand for such services can help operators efficiently allocate drivers to customers, and reduce idle time, improve congestion, and enhance the passenger experience. This paper proposes UberNet, a deep learning Convolutional Neural Network for short-term prediction of demand for ride-hailing services. UberNet empploys a multivariate framework that utilises a number of temporal and spatial features that have been found in the literature to explain demand for ride-hailing services. The proposed model includes two sub-networks that aim to encode the source series of various features and decode the predicting series, respectively. To assess the performance and effectiveness of UberNet, we use 9 months of Uber pickup data in 2014 and 28 spatial and temporal features from New York City. By comparing the performance of UberNet with several other approaches, we show that the prediction quality of the model is highly competitive. Further, Ubernet's prediction performance is better when using economic, social and built environment features. This suggests that Ubernet is more naturally suited to including complex motivators in making real-time passenger demand predictions for ride-hailing services.
translated by 谷歌翻译
人口级社会事件,如民事骚乱和犯罪,往往对我们的日常生活产生重大影响。预测此类事件对于决策和资源分配非常重要。由于缺乏关于事件发生的真实原因和潜在机制的知识,事件预测传统上具有挑战性。近年来,由于两个主要原因,研究事件预测研究取得了重大进展:(1)机器学习和深度学习算法的开发和(2)社交媒体,新闻来源,博客,经济等公共数据的可访问性指标和其他元数据源。软件/硬件技术中的数据的爆炸性增长导致了社会事件研究中的深度学习技巧的应用。本文致力于提供社会事件预测的深层学习技术的系统和全面概述。我们专注于两个社会事件的域名:\ Texit {Civil unrest}和\ texit {犯罪}。我们首先介绍事件预测问题如何作为机器学习预测任务制定。然后,我们总结了这些问题的数据资源,传统方法和最近的深度学习模型的发展。最后,我们讨论了社会事件预测中的挑战,并提出了一些有希望的未来研究方向。
translated by 谷歌翻译
如今,人工智能(AI)已成为临床和远程医疗保健应用程序的基本组成部分,但是最佳性能的AI系统通常太复杂了,无法自我解释。可解释的AI(XAI)技术被定义为揭示系统的预测和决策背后的推理,并且在处理敏感和个人健康数据时,它们变得更加至关重要。值得注意的是,XAI并未在不同的研究领域和数据类型中引起相同的关注,尤其是在医疗保健领域。特别是,许多临床和远程健康应用程序分别基于表格和时间序列数据,而XAI并未在这些数据类型上进行分析,而计算机视觉和自然语言处理(NLP)是参考应用程序。为了提供最适合医疗领域表格和时间序列数据的XAI方法的概述,本文提供了过去5年中文献的审查,说明了生成的解释的类型以及为评估其相关性所提供的努力和质量。具体而言,我们确定临床验证,一致性评估,客观和标准化质量评估以及以人为本的质量评估作为确保最终用户有效解释的关键特征。最后,我们强调了该领域的主要研究挑战以及现有XAI方法的局限性。
translated by 谷歌翻译
非侵入性负载监控(NILM)是将总功率消耗分为单个子组件的任务。多年来,已经合并了信号处理和机器学习算法以实现这一目标。关于最先进的方法,进行了许多出版物和广泛的研究工作,以涉及最先进的方法。科学界最初使用机器学习工具的尼尔姆问题制定和描述的最初兴趣已经转变为更实用的尼尔姆。如今,我们正处于成熟的尼尔姆时期,在现实生活中的应用程序方案中尝试使用尼尔姆。因此,算法的复杂性,可转移性,可靠性,实用性和普遍的信任度是主要的关注问题。这篇评论缩小了早期未成熟的尼尔姆时代与成熟的差距。特别是,本文仅对住宅电器的尼尔姆方法提供了全面的文献综述。本文分析,总结并介绍了大量最近发表的学术文章的结果。此外,本文讨论了这些方法的亮点,并介绍了研究人员应考虑的研究困境,以应用尼尔姆方法。最后,我们表明需要将传统分类模型转移到一个实用且值得信赖的框架中。
translated by 谷歌翻译
基于预测方法的深度学习已成为时间序列预测或预测的许多应用中的首选方法,通常通常优于其他方法。因此,在过去的几年中,这些方法现在在大规模的工业预测应用中无处不在,并且一直在预测竞赛(例如M4和M5)中排名最佳。这种实践上的成功进一步提高了学术兴趣,以理解和改善深厚的预测方法。在本文中,我们提供了该领域的介绍和概述:我们为深入预测的重要构建块提出了一定深度的深入预测;随后,我们使用这些构建块,调查了最近的深度预测文献的广度。
translated by 谷歌翻译
基于签名的技术使数学洞察力洞悉不断发展的数据的复杂流之间的相互作用。这些见解可以自然地转化为理解流数据的数值方法,也许是由于它们的数学精度,已被证明在数据不规则而不是固定的情况下分析流的数据以及数据和数据的尺寸很有用样本量均为中等。了解流的多模式数据是指数的:$ d $ d $的字母中的$ n $字母中的一个单词可以是$ d^n $消息之一。签名消除了通过采样不规则性引起的指数级噪声,但仍然存在指数量的信息。这项调查旨在留在可以直接管理指数缩放的域中。在许多问题中,可伸缩性问题是一个重要的挑战,但需要另一篇调查文章和进一步的想法。这项调查描述了一系列环境集足够小以消除大规模机器学习的可能性,并且可以有效地使用一小部分免费上下文和原则性功能。工具的数学性质可以使他们对非数学家的使用恐吓。本文中介绍的示例旨在弥合此通信差距,并提供从机器学习环境中绘制的可进行的工作示例。笔记本可以在线提供这些示例中的一些。这项调查是基于伊利亚·雪佛兰(Ilya Chevryev)和安德烈·科米利津(Andrey Kormilitzin)的早期论文,它们在这种机械开发的较早时刻大致相似。本文说明了签名提供的理论见解是如何在对应用程序数据的分析中简单地实现的,这种方式在很大程度上对数据类型不可知。
translated by 谷歌翻译
我们利用深度顺序模型来解决预测患者医疗保健利用的问题,这可能有助于政府更好地为未来的医疗保健使用提供资源。具体地,我们研究\纺织{发散亚组}的问题,其中较小的人口小组中的结果分布大大偏离了一般人群的群体。如果亚组的尺寸非常小(例如,稀有疾病),则对不同亚组的专业模型建造专门模型的传统方法可能是有问题的。为了解决这一挑战,我们首先开发一种新的无关注顺序模型,SANSFORMERS,灌输了适合在电子医疗记录中建模临床码的归纳偏差。然后,我们通过在整个健康登记处预先培训每个模型(接近100万名患者)之前,设计了一个特定的自我监督目标,并展示其有效性,特别是稀缺数据设置,特别是在整个健康登记处(接近一百万名患者)进行微调下游任务不同的子组。我们使用两个数据来源与LSTM和变压器模型进行比较新的SANSFARER架构和辅助医疗利用预测的多任务学习目标。凭经验,无关注的Sansformer模型在实验中始终如一地执行,在大多数情况下以至少$ \ SIM 10 $ \%表现出在大多数情况下的基线。此外,在预测医院访问数量时,自我监督的预训练将在整个始终提高性能,例如通过超过$ \ sim 50 $ \%(和高度为800美元\%)。
translated by 谷歌翻译
COVID-19的大流行提出了对多个领域决策者的流行预测的重要性,从公共卫生到整个经济。虽然预测流行进展经常被概念化为类似于天气预测,但是它具有一些关键的差异,并且仍然是一项非平凡的任务。疾病的传播受到人类行为,病原体动态,天气和环境条件的多种混杂因素的影响。由于政府公共卫生和资助机构的倡议,捕获以前无法观察到的方面的丰富数据来源的可用性增加了研究的兴趣。这尤其是在“以数据为中心”的解决方案上进行的一系列工作,这些解决方案通过利用非传统数据源以及AI和机器学习的最新创新来增强我们的预测能力的潜力。这项调查研究了各种数据驱动的方法论和实践进步,并介绍了一个概念框架来导航它们。首先,我们列举了与流行病预测相关的大量流行病学数据集和新的数据流,捕获了各种因素,例如有症状的在线调查,零售和商业,流动性,基因组学数据等。接下来,我们将讨论关注最近基于数据驱动的统计和深度学习方法的方法和建模范式,以及将机械模型知识域知识与统计方法的有效性和灵活性相结合的新型混合模型类别。我们还讨论了这些预测系统的现实部署中出现的经验和挑战,包括预测信息。最后,我们重点介绍了整个预测管道中发现的一些挑战和开放问题。
translated by 谷歌翻译