我们研究了在高维度中具有恒定步骤的随机梯度下降(SGD)的缩放限制。我们证明,随着尺寸为无穷大,SGD的摘要统计轨迹(即有限维函数)的轨迹限制了定理。我们的方法允许人们选择所跟踪的摘要统计信息,初始化和步进尺寸。它同时产生弹道(ODE)和扩散(SDE)极限,其极限取决于以前的选择。有趣的是,我们发现了阶梯尺寸的临界缩放机制,在该尺寸下,有效的弹道动力学与人口损失相匹配,但是在此期间,出现了一个新的校正项,从而改变了相图。关于这种有效动力学的固定点,相应的扩散极限可能非常复杂,甚至退化。我们在流行示例中演示了我们的方法,包括估算峰值矩阵和张量模型以及通过两层网络进行二进制和XOR型高斯混合模型的分类。这些示例表现出令人惊讶的现象,包括多模式的时间尺度到收敛以及融合到亚最佳溶液中,概率从随机(例如高斯)初始化范围内偏离零。
translated by 谷歌翻译
The logit outputs of a feedforward neural network at initialization are conditionally Gaussian, given a random covariance matrix defined by the penultimate layer. In this work, we study the distribution of this random matrix. Recent work has shown that shaping the activation function as network depth grows large is necessary for this covariance matrix to be non-degenerate. However, the current infinite-width-style understanding of this shaping method is unsatisfactory for large depth: infinite-width analyses ignore the microscopic fluctuations from layer to layer, but these fluctuations accumulate over many layers. To overcome this shortcoming, we study the random covariance matrix in the shaped infinite-depth-and-width limit. We identify the precise scaling of the activation function necessary to arrive at a non-trivial limit, and show that the random covariance matrix is governed by a stochastic differential equation (SDE) that we call the Neural Covariance SDE. Using simulations, we show that the SDE closely matches the distribution of the random covariance matrix of finite networks. Additionally, we recover an if-and-only-if condition for exploding and vanishing norms of large shaped networks based on the activation function.
translated by 谷歌翻译
在负面的感知问题中,我们给出了$ n $数据点$({\ boldsymbol x} _i,y_i)$,其中$ {\ boldsymbol x} _i $是$ d $ -densional vector和$ y_i \ in \ { + 1,-1 \} $是二进制标签。数据不是线性可分离的,因此我们满足自己的内容,以找到最大的线性分类器,具有最大的\ emph {否定}余量。换句话说,我们想找到一个单位常规矢量$ {\ boldsymbol \ theta} $,最大化$ \ min_ {i \ le n} y_i \ langle {\ boldsymbol \ theta},{\ boldsymbol x} _i \ rangle $ 。这是一个非凸优化问题(它相当于在Polytope中找到最大标准矢量),我们在两个随机模型下研究其典型属性。我们考虑比例渐近,其中$ n,d \ to \ idty $以$ n / d \ to \ delta $,并在最大边缘$ \ kappa _ {\ text {s}}(\ delta)上证明了上限和下限)$或 - 等效 - 在其逆函数$ \ delta _ {\ text {s}}(\ kappa)$。换句话说,$ \ delta _ {\ text {s}}(\ kappa)$是overparametization阈值:以$ n / d \ le \ delta _ {\ text {s}}(\ kappa) - \ varepsilon $一个分类器实现了消失的训练错误,具有高概率,而以$ n / d \ ge \ delta _ {\ text {s}}(\ kappa)+ \ varepsilon $。我们在$ \ delta _ {\ text {s}}(\ kappa)$匹配,以$ \ kappa \ to - \ idty $匹配。然后,我们分析了线性编程算法来查找解决方案,并表征相应的阈值$ \ delta _ {\ text {lin}}(\ kappa)$。我们观察插值阈值$ \ delta _ {\ text {s}}(\ kappa)$和线性编程阈值$ \ delta _ {\ text {lin {lin}}(\ kappa)$之间的差距,提出了行为的问题其他算法。
translated by 谷歌翻译
随机梯度算法在大规模学习和推理问题中广泛用于优化和采样。但是,实际上,调整这些算法通常是使用启发式和反复试验而不是严格的,可概括的理论来完成的。为了解决理论和实践之间的这一差距,我们通过表征具有固定步长的非常通用的预处理随机梯度算法的迭代术的大样本行为来对调整参数的效果进行新的见解。在优化设置中,我们的结果表明,具有较大固定步长的迭代平均值可能会导致(局部)M-静态器的统计效率近似。在抽样环境中,我们的结果表明,通过适当的调整参数选择,限制固定协方差可以与Bernstein匹配 - 后验的von Mises限制,对模型错误指定后验的调整或MLE的渐近分布;而幼稚的调整极限与这些都不相对应。此外,我们认为可以在数据集对固定数量的通行证后获得基本独立的样本。我们使用模拟和真实数据通过多个实验来验证渐近样结果。总体而言,我们证明具有恒定步长的正确调整的随机梯度算法为获得点估计或后部样品提供了计算上有效且统计上健壮的方法。
translated by 谷歌翻译
了解随机梯度下降(SGD)的隐式偏见是深度学习的关键挑战之一,尤其是对于过度透明的模型,损失功能的局部最小化$ l $可以形成多种多样的模型。从直觉上讲,SGD $ \ eta $的学习率很小,SGD跟踪梯度下降(GD),直到它接近这种歧管为止,梯度噪声阻止了进一步的收敛。在这样的政权中,Blanc等人。 (2020)证明,带有标签噪声的SGD局部降低了常规术语,损失的清晰度,$ \ mathrm {tr} [\ nabla^2 l] $。当前的论文通过调整Katzenberger(1991)的想法提供了一个总体框架。它原则上允许使用随机微分方程(SDE)描述参数的限制动力学的SGD围绕此歧管的正规化效应(即“隐式偏见”)的正则化效应,这是由损失共同确定的功能和噪声协方差。这产生了一些新的结果:(1)与Blanc等人的局部分析相比,对$ \ eta^{ - 2} $ steps有效的隐性偏差进行了全局分析。 (2020)仅适用于$ \ eta^{ - 1.6} $ steps和(2)允许任意噪声协方差。作为一个应用程序,我们以任意大的初始化显示,标签噪声SGD始终可以逃脱内核制度,并且仅需要$ o(\ kappa \ ln d)$样本用于学习$ \ kappa $ -sparse $ -sparse yroverparame parametrized linearized Linear Modal in $ \ Mathbb {r}^d $(Woodworth等,2020),而GD在内核制度中初始化的GD需要$ \ omega(d)$样本。该上限是最小值的最佳,并改善了先前的$ \ tilde {o}(\ kappa^2)$上限(Haochen等,2020)。
translated by 谷歌翻译
深度重新结合因实现最新的机器学习任务而被认可。但是,这些体系结构的出色性能取决于培训程序,需要精心制作以避免消失或爆炸梯度,尤其是随着深度$ l $的增加。关于如何减轻此问题,尚无共识,尽管广泛讨论的策略在于将每一层的输出缩放为$ \ alpha_l $。我们在概率环境中显示标准I.I.D.初始化,唯一的非平凡动力学是$ \ alpha_l = 1/\ sqrt {l} $(其他选择导致爆炸或身份映射)。该缩放因子在连续的时间限制中对应于神经随机微分方程,这与广泛的解释相反,即深度重新连接是神经普通微分方程的离散化。相比之下,在后一种制度中,具有特定相关初始化和$ \ alpha_l = 1/l $获得稳定性。我们的分析表明,与层指数的函数之间的缩放比例和规律性之间存在很强的相互作用。最后,在一系列实验中,我们表现出由这两个参数驱动的连续范围,这在训练之前和之后会共同影响性能。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
找到Reset中的参数的最佳配置是一个非凸显最小化问题,但一阶方法尽管如此,找到了过度分辨率制度的全局最优。通过将Reset的训练过程转化为梯度流部分微分方程(PDE)和检查该限制过程的收敛性能,我们研究了这种现象。假设激活函数为2美元 - 最佳或部分$ 1 $-homerence;正则Relu满足后一种条件。我们表明,如果Reset足够大,则深度和宽度根据代数上的准确性和置信水平,一阶优化方法可以找到适合培训数据的全局最小化器。
translated by 谷歌翻译
显示了最佳的收敛速率,显示了对保守随机偏微分方程的平均场限制对解决方案解决方案解决方案解决方案的收敛。作为第二个主要结果,该SPDE的定量中心极限定理再次得出,并以最佳的收敛速率得出。该结果尤其适用于在过叠层化的,浅的神经网络中与SPDES溶液中随机梯度下降动力学的平均场缩放率的收敛性。结果表明,在限制SPDE中包含波动可以提高收敛速度,并保留有关随机梯度下降的波动的信息。
translated by 谷歌翻译
计算科学和统计推断中的许多应用都需要计算有关具有未知归一化常数的复杂高维分布以及这些常数的估计。在这里,我们开发了一种基于从简单的基本分布生成样品,沿着速度场生成的流量运输的方法,并沿这些流程线执行平均值。这种非平衡重要性采样(NEIS)策略是直接实施的,可用于具有任意目标分布的计算。在理论方面,我们讨论了如何将速度场定制到目标,并建立所提出的估计器是一个完美的估计器,具有零变化。我们还通过将基本分布映射到目标上,通过传输图绘制了NEIS和方法之间的连接。在计算方面,我们展示了如何使用深度学习来代表神经网络,并将其训练为零方差最佳。这些结果在高维示例上进行了数值说明,我们表明训练速度场可以将NEIS估计量的方差降低至6个数量级,而不是Vanilla估计量。我们还表明,NEIS在这些示例上的表现要比NEAL的退火重要性采样(AIS)更好。
translated by 谷歌翻译
在一个拟合训练数据的深度神经网络(NN)中找到参数是一个非渗透优化问题,但基本的一阶优化方法(梯度下降)在许多实际情况下,具有完美拟合(零损失)的全局优化器。我们在限制性制度中检查残留神经网络(Reset)的剩余神经网络(Reset)的情况的这种现象,其中每个层(宽度)的层数(深度)和权重的数量均转到无穷大。首先,我们使用平均场限制参数来证明参数训练的梯度下降成为概率分布的梯度流,其特征在于大NN限制中的部分微分方程(PDE)。接下来,我们表明,在某些假设下,PDE的解决方案在训练时间内收敛到零损失解决方案。这些结果表明,如果Reset足够大,则reset的培训给出了近零损失。我们给出了减少给定阈值以下低于给定阈值的损失所需的深度和宽度的估计值。
translated by 谷歌翻译
Network data are ubiquitous in modern machine learning, with tasks of interest including node classification, node clustering and link prediction. A frequent approach begins by learning an Euclidean embedding of the network, to which algorithms developed for vector-valued data are applied. For large networks, embeddings are learned using stochastic gradient methods where the sub-sampling scheme can be freely chosen. Despite the strong empirical performance of such methods, they are not well understood theoretically. Our work encapsulates representation methods using a subsampling approach, such as node2vec, into a single unifying framework. We prove, under the assumption that the graph is exchangeable, that the distribution of the learned embedding vectors asymptotically decouples. Moreover, we characterize the asymptotic distribution and provided rates of convergence, in terms of the latent parameters, which includes the choice of loss function and the embedding dimension. This provides a theoretical foundation to understand what the embedding vectors represent and how well these methods perform on downstream tasks. Notably, we observe that typically used loss functions may lead to shortcomings, such as a lack of Fisher consistency.
translated by 谷歌翻译
Testing the significance of a variable or group of variables $X$ for predicting a response $Y$, given additional covariates $Z$, is a ubiquitous task in statistics. A simple but common approach is to specify a linear model, and then test whether the regression coefficient for $X$ is non-zero. However, when the model is misspecified, the test may have poor power, for example when $X$ is involved in complex interactions, or lead to many false rejections. In this work we study the problem of testing the model-free null of conditional mean independence, i.e. that the conditional mean of $Y$ given $X$ and $Z$ does not depend on $X$. We propose a simple and general framework that can leverage flexible nonparametric or machine learning methods, such as additive models or random forests, to yield both robust error control and high power. The procedure involves using these methods to perform regressions, first to estimate a form of projection of $Y$ on $X$ and $Z$ using one half of the data, and then to estimate the expected conditional covariance between this projection and $Y$ on the remaining half of the data. While the approach is general, we show that a version of our procedure using spline regression achieves what we show is the minimax optimal rate in this nonparametric testing problem. Numerical experiments demonstrate the effectiveness of our approach both in terms of maintaining Type I error control, and power, compared to several existing approaches.
translated by 谷歌翻译
We consider the problem of estimating a multivariate function $f_0$ of bounded variation (BV), from noisy observations $y_i = f_0(x_i) + z_i$ made at random design points $x_i \in \mathbb{R}^d$, $i=1,\ldots,n$. We study an estimator that forms the Voronoi diagram of the design points, and then solves an optimization problem that regularizes according to a certain discrete notion of total variation (TV): the sum of weighted absolute differences of parameters $\theta_i,\theta_j$ (which estimate the function values $f_0(x_i),f_0(x_j)$) at all neighboring cells $i,j$ in the Voronoi diagram. This is seen to be equivalent to a variational optimization problem that regularizes according to the usual continuum (measure-theoretic) notion of TV, once we restrict the domain to functions that are piecewise constant over the Voronoi diagram. The regression estimator under consideration hence performs (shrunken) local averaging over adaptively formed unions of Voronoi cells, and we refer to it as the Voronoigram, following the ideas in Koenker (2005), and drawing inspiration from Tukey's regressogram (Tukey, 1961). Our contributions in this paper span both the conceptual and theoretical frontiers: we discuss some of the unique properties of the Voronoigram in comparison to TV-regularized estimators that use other graph-based discretizations; we derive the asymptotic limit of the Voronoi TV functional; and we prove that the Voronoigram is minimax rate optimal (up to log factors) for estimating BV functions that are essentially bounded.
translated by 谷歌翻译
We investigate the asymptotic properties of deep Residual networks (ResNets) as the number of layers increases. We first show the existence of scaling regimes for trained weights markedly different from those implicitly assumed in the neural ODE literature. We study the convergence of the hidden state dynamics in these scaling regimes, showing that one may obtain an ODE, a stochastic differential equation (SDE) or neither of these. In particular, our findings point to the existence of a diffusive regime in which the deep network limit is described by a class of stochastic differential equations (SDEs). Finally, we derive the corresponding scaling limits for the backpropagation dynamics.
translated by 谷歌翻译
最近的作品证明了过度参数化学习中的双重下降现象:随着模型参数的数量的增加,多余的风险具有$ \ mathsf {u} $ - 在开始时形状,然后在模型高度过度参数化时再次减少。尽管最近在不同的环境(例如线性模型,随机特征模型和内核方法)下进行了研究,但在理论上尚未完全理解这种现象。在本文中,我们考虑了由两种随机特征组成的双随机特征模型(DRFM),并研究DRFM在脊回归中实现的多余风险。我们计算高维框架下的多余风险的确切限制,在这种框架上,训练样本量,数据尺寸和随机特征的维度往往会成比例地无限。根据计算,我们证明DRFM的风险曲线可以表现出三重下降。然后,我们提供三重下降现象的解释,并讨论随机特征维度,正则化参数和信噪比比率如何控制DRFMS风险曲线的形状。最后,我们将研究扩展到多个随机功能模型(MRFM),并表明具有$ K $类型的随机功能的MRFM可能会显示出$(K+1)$ - 折叠。我们的分析指出,具有特定数量下降的风险曲线通常在基于特征的回归中存在。另一个有趣的发现是,当学习神经网络在“神经切线内核”制度中时,我们的结果可以恢复文献中报告的风险峰值位置。
translated by 谷歌翻译
Classical asymptotic theory for statistical inference usually involves calibrating a statistic by fixing the dimension $d$ while letting the sample size $n$ increase to infinity. Recently, much effort has been dedicated towards understanding how these methods behave in high-dimensional settings, where $d$ and $n$ both increase to infinity together. This often leads to different inference procedures, depending on the assumptions about the dimensionality, leaving the practitioner in a bind: given a dataset with 100 samples in 20 dimensions, should they calibrate by assuming $n \gg d$, or $d/n \approx 0.2$? This paper considers the goal of dimension-agnostic inference; developing methods whose validity does not depend on any assumption on $d$ versus $n$. We introduce an approach that uses variational representations of existing test statistics along with sample splitting and self-normalization to produce a new test statistic with a Gaussian limiting distribution, regardless of how $d$ scales with $n$. The resulting statistic can be viewed as a careful modification of degenerate U-statistics, dropping diagonal blocks and retaining off-diagonal blocks. We exemplify our technique for some classical problems including one-sample mean and covariance testing, and show that our tests have minimax rate-optimal power against appropriate local alternatives. In most settings, our cross U-statistic matches the high-dimensional power of the corresponding (degenerate) U-statistic up to a $\sqrt{2}$ factor.
translated by 谷歌翻译
This paper studies the infinite-width limit of deep linear neural networks initialized with random parameters. We obtain that, when the number of neurons diverges, the training dynamics converge (in a precise sense) to the dynamics obtained from a gradient descent on an infinitely wide deterministic linear neural network. Moreover, even if the weights remain random, we get their precise law along the training dynamics, and prove a quantitative convergence result of the linear predictor in terms of the number of neurons. We finally study the continuous-time limit obtained for infinitely wide linear neural networks and show that the linear predictors of the neural network converge at an exponential rate to the minimal $\ell_2$-norm minimizer of the risk.
translated by 谷歌翻译
为了理论上了解训练有素的深神经网络的行为,有必要研究来自随机初始化的梯度方法引起的动态。然而,这些模型的非线性和组成结构使得这些动态难以分析。为了克服这些挑战,最近出现了大宽度的渐近学作为富有成效的观点,并导致了对真实世界的深网络的实用洞察。对于双层神经网络,已经通过这些渐近学理解,训练模型的性质根据初始随机权重的规模而变化,从内核制度(大初始方差)到特征学习制度(对于小初始方差)。对于更深的网络,更多的制度是可能的,并且在本文中,我们详细研究了与神经网络的“卑鄙字段”限制相对应的“小”初始化的特定选择,我们称之为可分配的参数化(IP)。首先,我们展示了标准I.I.D.零平均初始化,具有多于四个层的神经网络的可集参数,从无限宽度限制的静止点开始,并且不会发生学习。然后,我们提出了各种方法来避免这种琐碎的行为并详细分析所得到的动态。特别是,这些方法中的一种包括使用大的初始学习速率,并且我们表明它相当于最近提出的最大更新参数化$ \ mu $ p的修改。我们将结果与图像分类任务的数值实验确认,其另外显示出在尚未捕获的激活功能的各种选择之间的行为中的强烈差异。
translated by 谷歌翻译
We provide results that exactly quantify how data augmentation affects the convergence rate and variance of estimates. They lead to some unexpected findings: Contrary to common intuition, data augmentation may increase rather than decrease the uncertainty of estimates, such as the empirical prediction risk. Our main theoretical tool is a limit theorem for functions of randomly transformed, high-dimensional random vectors. The proof draws on work in probability on noise stability of functions of many variables. The pathological behavior we identify is not a consequence of complex models, but can occur even in the simplest settings -- one of our examples is a ridge regressor with two parameters. On the other hand, our results also show that data augmentation can have real, quantifiable benefits.
translated by 谷歌翻译