我们表明,可以通过$ 1 $维度统一的输入分配来通过Deep Relu Networks生成有限支持的每$ D $维概率分布。更重要的是,这是可能的,而没有产生成本 - 就瓦斯坦斯坦距离测得的近似错误而言 - 相对于从$ d $ d $独立的随机变量中生成$ d $维的目标分布。这是通过对(Bailey&Telgarsky,2018)中发现的空间填充方法的广泛概括来实现的。我们提出的构造提出了网络深度在推动目标分布与其神经网络近似之间的Wasserstein距离至零之间的重要性。最后,我们发现,对于直方图目标分布,编码相应生成网络所需的位数等于编码概率分布所规定的基本限制。
translated by 谷歌翻译
生成的对抗网络(GAN)在无监督学习方面取得了巨大的成功。尽管具有显着的经验表现,但关于gan的统计特性的理论研究有限。本文提供了gan的近似值和统计保证,以估算具有H \“ {o} lder空间密度的数据分布。我们的主要结果表明,如果正确选择了生成器和鉴别器网络架构,则gan是一致的估计器在较强的差异指标下的数据分布(例如Wasserstein-1距离。 ,这不受环境维度的诅咒。我们对低维数据的分析基于具有Lipschitz连续性保证的神经网络的通用近似理论,这可能具有独立的兴趣。
translated by 谷歌翻译
神经网络理论中最有影响力的结果之一是通用近似定理[1,2,3],其指出,连续函数可以通过单隐藏的层前馈神经网络近似地近似于任意精度。本文的目的是在这种精神上建立一个结果,用于近似通用离散时间线性动力系统 - 包括时变系统 - 通过经常性的神经网络(RNN)。对于线性时间不变(LTI)系统的子类,我们设计了该陈述的定量版本。具体而言,根据[4],通过公制熵测量所考虑的LTI系统的复杂性,我们表明RNN可以最佳地学习 - 或识别系统理论Parlance - 稳定的LTI系统。对于通过差分方程表征其输入输出关系的LTI系统,这意味着RNN可以以度量熵最佳方式从输入输出迹线中学习差分方程。
translated by 谷歌翻译
我们研究基于度量传输的非参数密度估计器的收敛性和相关距离。这些估计量代表了利息的度量,作为传输图下选择的参考分布的推动力,其中地图是通过最大似然目标选择(等效地,将经验性的kullback-leibler损失)或其受惩罚版本选择。我们通过将M估计的技术与基于运输的密度表示的分析性能相结合,为一般惩罚措施估计量的一般类别的措施运输估计器建立了浓度不平等。然后,我们证明了我们的理论对三角形knothe-rosenblatt(kr)在$ d $维单元方面的运输的含义,并表明该估计器的惩罚和未化的版本都达到了Minimax最佳收敛速率,超过了H \ \ \'“较旧的密度类别。具体来说,我们建立了在有限的h \“较旧型球上,未确定的非参数最大似然估计,然后在某些sobolev-penalate的估计器和筛分的小波估计器中建立了最佳速率。
translated by 谷歌翻译
给定$ n $数据点$ \ mathbb {r}^d $中的云,请考虑$ \ mathbb {r}^d $的$ m $ dimensional子空间预计点。当$ n,d $增长时,这一概率分布的集合如何?我们在零模型下考虑了这个问题。标准高斯矢量,重点是渐近方案,其中$ n,d \ to \ infty $,$ n/d \ to \ alpha \ in(0,\ infty)$,而$ m $是固定的。用$ \ mathscr {f} _ {m,\ alpha} $表示$ \ mathbb {r}^m $中的一组概率分布,在此限制中以低维度为单位,我们在此限制中建立了新的内部和外部界限$ \ mathscr {f} _ {m,\ alpha} $。特别是,我们将$ \ mathscr {f} _ {m,\ alpha} $的Wasserstein Radius表征为对数因素,并以$ M = 1 $确切确定它。我们还通过kullback-leibler差异和r \'{e} NYI信息维度证明了尖锐的界限。上一个问题已应用于无监督的学习方法,例如投影追求和独立的组件分析。我们介绍了与监督学习相关的相同问题的版本,并证明了尖锐的沃斯坦斯坦半径绑定。作为一个应用程序,我们在具有$ M $隐藏神经元的两层神经网络的插值阈值上建立了上限。
translated by 谷歌翻译
我们研究了随着正则化参数的消失,差异调节的最佳转运的收敛性消失。一般差异的尖锐费率包括相对熵或$ l^{p} $正则化,一般运输成本和多边界问题。使用量化和Martingale耦合的新方法适用于非紧密的边际和实现,特别是对于所有有限$(2+ \ delta)$ - 时刻的边缘的熵正规化2-wasserstein距离的尖锐前阶项。
translated by 谷歌翻译
我们引入了一个深度学习模型,该模型通常可以近似于常规条件分布(RCD)。所提出的模型分为三个阶段:首先从给定的度量空间$ \ mathcal {x} $到$ \ mathbb {r}^d $通过功能映射进行线性化输入,然后这些线性化的功能由深层馈电的神经网络处理,然后通过Bahdanau等人引入的注意机制的概率扩展,将网络的输出转换为$ 1 $ -WASSERSTEIN SPACE $ \ MATHCAL {P} _1(\ Mathbb {r}^d)$。 (2014)。我们发现,使用我们的框架构建的模型可以从$ \ mathbb {r}^d $到$ \ mathcal {p} _1(\ mathbb {r}^d)$均匀地在紧凑的集合上近似任何连续功能。当近似$ \ mathcal {p} _1(\ mathbb {r}^d)$ - 有价值的函数时,我们确定了两种避免维数的诅咒的方法。第一个策略描述了$ c(\ mathbb {r}^d,\ mathcal {p} _1(\ mathbb {r}^d))$中的函数,可以在$ \ mathbb {r}的任何紧凑子集上有效地近似地近似^D $。第二种方法描述了$ \ mathbb {r}^d $的紧凑子集,其中最多的$ c(\ mathbb {r}^d,\ mathcal {p} _1 _1(\ mathbb {r}^d))$可以有效地近似。结果经过实验验证。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
生成的对抗网络后面的数学力量提高了具有挑战性的理论问题。通过表征产生的分布的几何特性的重要问题,我们在有限的样本和渐近制度中对Wassersein Gans(WGAN)进行了彻底分析。我们研究了潜伏空间是单变量的特定情况,并且不管输出空间的尺寸如何有效。我们特别地显示出用于固定的样本大小,最佳WGAN与连接路径紧密相连,最小化采样点之间的平方欧几里德距离的总和。我们还强调了WGAN能够接近的事实(对于1-Wasserstein距离)目标分布,因为样本大小趋于无穷大,在给定的会聚速率下,并且提供了生成的Lipschitz函数的家族适当地增长。我们在半离散环境中获得了在最佳运输理论上传递新结果。
translated by 谷歌翻译
近似消息传递(AMP)是解决高维统计问题的有效迭代范式。但是,当迭代次数超过$ o \ big(\ frac {\ log n} {\ log log \ log \ log n} \时big)$(带有$ n $问题维度)。为了解决这一不足,本文开发了一个非吸附框架,用于理解峰值矩阵估计中的AMP。基于AMP更新的新分解和可控的残差项,我们布置了一个分析配方,以表征在存在独立初始化的情况下AMP的有限样本行为,该过程被进一步概括以进行光谱初始化。作为提出的分析配方的两个具体后果:(i)求解$ \ mathbb {z} _2 $同步时,我们预测了频谱初始化AMP的行为,最高为$ o \ big(\ frac {n} {\ mathrm {\ mathrm { poly} \ log n} \ big)$迭代,表明该算法成功而无需随后的细化阶段(如最近由\ citet {celentano2021local}推测); (ii)我们表征了稀疏PCA中AMP的非反应性行为(在尖刺的Wigner模型中),以广泛的信噪比。
translated by 谷歌翻译
比较概率分布是许多机器学习算法的关键。最大平均差异(MMD)和最佳运输距离(OT)是在过去几年吸引丰富的关注的概率措施之间的两类距离。本文建立了一些条件,可以通过MMD规范控制Wassersein距离。我们的作品受到压缩统计学习(CSL)理论的推动,资源有效的大规模学习的一般框架,其中训练数据总结在单个向量(称为草图)中,该训练数据捕获与所考虑的学习任务相关的信息。在CSL中的现有结果启发,我们介绍了H \“较旧的较低限制的等距属性(H \”较旧的LRIP)并表明这家属性具有有趣的保证对压缩统计学习。基于MMD与Wassersein距离之间的关系,我们通过引入和研究学习任务的Wassersein可读性的概念来提供压缩统计学习的保证,即概率分布之间的某些特定于特定的特定度量,可以由Wassersein界定距离。
translated by 谷歌翻译
Several problems in stochastic analysis are defined through their geometry, and preserving that geometric structure is essential to generating meaningful predictions. Nevertheless, how to design principled deep learning (DL) models capable of encoding these geometric structures remains largely unknown. We address this open problem by introducing a universal causal geometric DL framework in which the user specifies a suitable pair of geometries $\mathscr{X}$ and $\mathscr{Y}$ and our framework returns a DL model capable of causally approximating any ``regular'' map sending time series in $\mathscr{X}^{\mathbb{Z}}$ to time series in $\mathscr{Y}^{\mathbb{Z}}$ while respecting their forward flow of information throughout time. Suitable geometries on $\mathscr{Y}$ include various (adapted) Wasserstein spaces arising in optimal stopping problems, a variety of statistical manifolds describing the conditional distribution of continuous-time finite state Markov chains, and all Fr\'echet spaces admitting a Schauder basis, e.g. as in classical finance. Suitable, $\mathscr{X}$ are any compact subset of any Euclidean space. Our results all quantitatively express the number of parameters needed for our DL model to achieve a given approximation error as a function of the target map's regularity and the geometric structure both of $\mathscr{X}$ and of $\mathscr{Y}$. Even when omitting any temporal structure, our universal approximation theorems are the first guarantees that H\"older functions, defined between such $\mathscr{X}$ and $\mathscr{Y}$ can be approximated by DL models.
translated by 谷歌翻译
三角形流量,也称为kn \“{o}的Rosenblatt测量耦合,包括用于生成建模和密度估计的归一化流模型的重要构建块,包括诸如实值的非体积保存变换模型的流行自回归流模型(真实的NVP)。我们提出了三角形流量统计模型的统计保证和样本复杂性界限。特别是,我们建立了KN的统计一致性和kullback-leibler估算器的rospblatt的kullback-leibler估计的有限样本会聚率使用实证过程理论的工具测量耦合。我们的结果突出了三角形流动下播放功能类的各向异性几何形状,优化坐标排序,并导致雅各比比流动的统计保证。我们对合成数据进行数值实验,以说明我们理论发现的实际意义。
translated by 谷歌翻译
本文介绍了一种新的基于仿真的推理程序,以对访问I.I.D. \ samples的多维概率分布进行建模和样本,从而规避明确建模密度函数或设计Markov Chain Monte Carlo的通常方法。我们提出了一个称为可逆的Gromov-monge(RGM)距离的新概念的距离和同构的动机,并研究了RGM如何用于设计新的转换样本,以执行基于模拟的推断。我们的RGM采样器还可以估计两个异质度量度量空间之间的最佳对齐$(\ cx,\ mu,c _ {\ cx})$和$(\ cy,\ cy,\ nu,c _ {\ cy})$从经验数据集中,估计的地图大约将一个量度$ \ mu $推向另一个$ \ nu $,反之亦然。我们研究了RGM距离的分析特性,并在轻度条件下得出RGM等于经典的Gromov-Wasserstein距离。奇怪的是,与Brenier的两极分解结合了连接,我们表明RGM采样器以$ C _ {\ cx} $和$ C _ {\ cy} $的正确选择诱导了强度同构的偏见。研究了有关诱导采样器的收敛,表示和优化问题的统计率。还展示了展示RGM采样器有效性的合成和现实示例。
translated by 谷歌翻译
计算Wassersein BaryCenters(A.K.A.最佳运输重构)是由于数据科学的许多应用,最近引起了相当大的关注的几何问题。虽然存在任何固定维度的多项式时间算法,但所有已知的运行时间都在维度中呈指数级。这是一个开放的问题,无论是这种指数依赖性是否可改进到多项式依赖性。本文证明,除非P = NP,答案是否定的。这揭示了Wassersein的BaryCenter计算的“维度诅咒”,其不会发生最佳运输计算。此外,我们对计算Wassersein的硬度结果延伸到近似计算,看似简单的问题案例,以及在其他最佳运输指标中平均概率分布。
translated by 谷歌翻译
我们研究了有限空间中值的静止随机过程的最佳运输。为了反映潜在流程的实向性,我们限制了对固定联轴器的关注,也称为联系。由此产生的最佳连接问题捕获感兴趣过程的长期平均行为的差异。我们介绍了最优联接的估算和最佳的加入成本,我们建立了温和条件下估算器的一致性。此外,在更强的混合假设下,我们为估计的最佳连接成本建立有限样本误差速率,其延伸了IID案件中的最佳已知结果。最后,我们将一致性和速率分析扩展到最佳加入问题的熵惩罚版本。
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
切成薄片的相互信息(SMI)定义为在随机变量的一维随机投影之间的平均值(MI)项。它是对经典MI依赖的替代度量,该量子保留了许多特性,但更可扩展到高维度。但是,对SMI本身和其估计率的定量表征取决于环境维度,这对于理解可伸缩性至关重要,仍然晦涩难懂。这项工作将原始的SMI定义扩展到$ K $ -SMI,该定义将预测视为$ k $维二维子空间,并提供了有关其依赖性尺寸的多方面帐户。在2-Wasserstein指标中使用差分熵连续性的新结果,我们对Monte Carlo(MC)基于$ K $ -SMI的估计的错误得出了尖锐的界限,并明确依赖于$ K $和环境维度,揭示了他们与样品数量的相互作用。然后,我们将MC Integrator与神经估计框架相结合,以提供端到端$ K $ -SMI估算器,为此建立了最佳的收敛率。随着尺寸的增长,我们还探索了人口$ k $ -smi的渐近学,从而为高斯近似结果提供了在适当的力矩范围下衰减的残差。我们的理论通过数值实验验证,并适用于切片Infogan,该切片完全提供了$ k $ -smi的可伸缩性问题的全面定量说明,包括SMI作为特殊情况,当$ k = 1 $。
translated by 谷歌翻译
我们研究了由覆盖在R ^ M中的N维歧管支持的概率措施的近似 - 由可逆流和单层注射部件组成的神经网络。当M <= 3N时,我们显示R ^ n和r ^ m之间的注射流量在可扩展的嵌入物图像中支持的普遍近似措施,这是标准嵌入的适当子集。在这个制度拓扑障碍物中,拓扑障碍能够作为可允许的目标。当m> = 3n + 1时,我们使用称为*清洁技巧*的代数拓扑的论点来证明拓扑障碍物消失和注射般的流动普遍近似任何可分辨率的嵌入。沿途,我们表明,可以在Brehmer et Cranmer 2020中的猜想中建立“反向”可以建立铭刻流动网络的最优性。此外,设计的网络可以简单,它们可以配备其他属性,例如一个新的投影结果。
translated by 谷歌翻译
我们研究神经网络表达能力的基本限制。给定两组$ f $,$ g $的实值函数,我们首先证明了$ f $中的功能的一般下限,可以在$ l^p(\ mu)$ norm中通过$ g中的功能近似$,对于任何$ p \ geq 1 $和任何概率度量$ \ mu $。下限取决于$ f $的包装数,$ f $的范围以及$ g $的脂肪震动尺寸。然后,我们实例化了$ g $对应于分段的馈电神经网络的情况,并详细描述了两组$ f $:h {\“ o} lder balls和多变量单调函数。除了匹配(已知或新的)上限与日志因素外,我们的下限还阐明了$ l^p $ Norm或SUP Norm中近似之间的相似性或差异,解决了Devore等人的开放问题(2021年))。我们的证明策略与SUP Norm案例不同,并使用了Mendelson(2002)的关键概率结果。
translated by 谷歌翻译