贝叶斯优化有效地优化了黑盒问题中的参数。但是,在有限的试验中,该方法对于高维参数不起作用。可以通过非线性将其嵌入低维空间来有效地探索参数。但是,不能考虑约束。我们提出了将参数分解组合到非线性嵌入中,以考虑在高维贝叶斯优化中考虑已知的平等和未知不平等约束。我们将提出的方法应用于粉末称重任务,作为使用情况。根据实验结果,与手动参数调整相比,提出的方法考虑了约束,并将试验数量减少约66%。
translated by 谷歌翻译
基于自动编码器的降低订购建模(ROM)最近由于其捕获基本非线性特征的能力而引起了极大的关注。但是,两个关键缺点严重破坏了其对各种物理应用的可伸缩性:纠缠和无法解释的潜在变量(LVS)和潜在空间维度的眼罩确定。在这方面,本研究提出了仅使用$ \ beta $ - variational AutoCododer提取的可解释和信息密集型LV的物理感知ROM,在本文中被称为物理意识的LV。为了提取这些LV,它们的独立性和信息强度在二维跨音速基准问题中进行了定量检查。然后,对物理意识的LV的物理含义进行了彻底的研究,我们确认,使用适当的超参数$ \ beta $,它们实际上对应于训练数据集的生成因子,马赫数和攻击角度。据作者所知,我们的工作是第一个实际上确认$ \ beta $ variational自动编码器可以自动提取应用物理领域的物理生成因子。最后,将仅利用物理意识的LVS的物理学意识ROM与常规ROM进行了比较,并且成功验证了其有效性和效率。
translated by 谷歌翻译
从高维观测数据中提取低维潜在空间对于在提取的潜在空间上构建具有世界模型的实时机器人控制器至关重要。但是,没有建立的方法可以自动调整潜在空间的尺寸,因为它发现了必要和充分的尺寸大小,即世界模型的最小实现。在这项研究中,我们分析并改善了基于Tsallis的变异自动编码器(Q-VAE),并揭示,在适当的配置下,它始终有助于使潜在空间稀疏。即使与最小的实现相比,预先指定的潜在空间的尺寸是多余的,这种稀疏也会崩溃不必要的尺寸,从而易于删除它们。我们通过提出的方法在实验中验证了稀疏性的好处,它可以轻松地使用需要六维状态空间的移动操纵器找到必要和足够的六个维度。此外,通过在提取的维度中学习的最低实现世界模型的计划,该提出的方法能够实时发挥最佳的动作序列,从而将达到的成就时间降低了约20%。随附的视频已上传到YouTube:https://youtu.be/-qjitrnxars上
translated by 谷歌翻译
由于指定了所需的目标性能分布,逆方法在空气动力学设计中计算得高效。但是,它具有一些重要的限制,防止其实现全面效率。首先,只要指定的目标分布更改,应重复迭代程序。可以执行目标分布优化以阐明指定该分布的歧义,但在该过程中出现了几个额外问题,例如由于分布的分布参数化而导致的表示容量丢失,对逼真分布的过度约束,感兴趣的数量的不准确性为了理论/经验预测,明确地施加几何限制的不可能性。为了处理这些问题,提出了一种具有两步深度学习方法的新型逆设计优化框架。变形AutoEncoder和多层的Perceptron用于生成现实的目标分布,并分别预测来自生成的分布的感兴趣的数量和形状参数。然后,执行目标分发优化作为逆设计优化。所提出的框架应用主动学习和转移学习技术,以提高准确性和效率。最后,通过风力涡轮机翼型的空气动力学优化验证该框架。它们的结果表明,该框架准确,高效,灵活地应用于其他逆设计工程应用。
translated by 谷歌翻译
由于其数据效率,贝叶斯优化已经出现在昂贵的黑盒优化的最前沿。近年来,关于新贝叶斯优化算法及其应用的发展的研究激增。因此,本文试图对贝叶斯优化的最新进展进行全面和更新的调查,并确定有趣的开放问题。我们将贝叶斯优化的现有工作分为九个主要群体,并根据所提出的算法的动机和重点。对于每个类别,我们介绍了替代模型的构建和采集功能的适应的主要进步。最后,我们讨论了开放的问题,并提出了有希望的未来研究方向,尤其是在分布式和联合优化系统中的异质性,隐私保护和公平性方面。
translated by 谷歌翻译
现代工业系统中成像和配置传感器的广泛可访问性创造了大量的高维传感变量。这导致对高维过程监测的研究日益兴趣。然而,文献中的大多数方法都假设控制内人群以给定基础(即样条,小波,核等)或未知基础(即主成分分析及其变体)的线性歧管(即样条,小波,内核等)。 ,不能用来有效地用非线性流形对概况进行建模,这在许多现实生活中很常见。我们将深层概率自动编码器作为一种可行的无监督学习方法来建模这种歧管。为此,我们从经典方法中制定了监测统计数据的非线性和概率扩展,作为预期重建误差(ERE)和基于KL-Divergence(KLD)的监视统计量。通过广泛的仿真研究,我们提供了有关为什么基于潜在空间的统计数据不可靠的见解,以及为什么基于残留空间的统计数据通常在基于深度学习的方法方面表现更好。最后,我们通过模拟研究和现实生活中的案例研究展示了深层概率模型的优势,涉及热钢滚动过程中缺陷的图像。
translated by 谷歌翻译
大量的数据和创新算法使数据驱动的建模成为现代行业的流行技术。在各种数据驱动方法中,潜在变量模型(LVM)及其对应物占主要份额,并在许多工业建模领域中起着至关重要的作用。 LVM通常可以分为基于统计学习的经典LVM和基于神经网络的深层LVM(DLVM)。我们首先讨论经典LVM的定义,理论和应用,该定义和应用既是综合教程,又是对经典LVM的简短申请调查。然后,我们对当前主流DLVM进行了彻底的介绍,重点是其理论和模型体系结构,此后不久就提供了有关DLVM的工业应用的详细调查。上述两种类型的LVM具有明显的优势和缺点。具体而言,经典的LVM具有简洁的原理和良好的解释性,但是它们的模型能力无法解决复杂的任务。基于神经网络的DLVM具有足够的模型能力,可以在复杂的场景中实现令人满意的性能,但它以模型的解释性和效率为例。旨在结合美德并减轻这两种类型的LVM的缺点,并探索非神经网络的举止以建立深层模型,我们提出了一个新颖的概念,称为“轻量级Deep LVM(LDLVM)”。在提出了这个新想法之后,该文章首先阐述了LDLVM的动机和内涵,然后提供了两个新颖的LDLVM,并详尽地描述了其原理,建筑和优点。最后,讨论了前景和机会,包括重要的开放问题和可能的研究方向。
translated by 谷歌翻译
当前独立于域的经典计划者需要问题域和实例作为输入的符号模型,从而导致知识采集瓶颈。同时,尽管深度学习在许多领域都取得了重大成功,但知识是在与符号系统(例如计划者)不兼容的亚符号表示中编码的。我们提出了Latplan,这是一种无监督的建筑,结合了深度学习和经典计划。只有一组未标记的图像对,显示了环境中允许的过渡子集(训练输入),Latplan学习了环境的完整命题PDDL动作模型。稍后,当给出代表初始状态和目标状态(计划输入)的一对图像时,Latplan在符号潜在空间中找到了目标状态的计划,并返回可视化的计划执行。我们使用6个计划域的基于图像的版本来评估LATPLAN:8个插头,15个式嘴,Blockworld,Sokoban和两个LightsOut的变体。
translated by 谷歌翻译
以无监督的方式从高维领域提取生成参数的能力是计算物理学中的非常理想尚未实现的目标。这项工作探讨了用于非线性尺寸降低的变形Autiachoders(VAES),其特定目的是{\ EM解散}的特定目标,以识别生成数据的独立物理参数。解除戒开的分解是可解释的,并且可以转移到包括生成建模,设计优化和概率减少阶级型建模的各种任务。这项工作的重大重点是使用VAE来表征解剖学,同时最小地修改经典的VAE损失功能(即证据下限)以保持高重建精度。损耗景观的特点是过度正常的局部最小值,其环绕所需的解决方案。我们通过在模型多孔流量问题中并列在模拟潜在分布和真正的生成因子中,说明了分解和纠缠符号之间的比较。展示了等级前瞻,促进了解除不诚实的表现的学习。在用旋转不变的前沿训练时,正则化损失不受潜在的旋转影响,从而学习非旋转不变的前锋有助于捕获生成因子的性质,改善解剖学。最后,表明通过标记少量样本($ O(1 \%)$)来实现半监督学习 - 导致可以一致地学习的准确脱屑潜在的潜在表示。
translated by 谷歌翻译
我们考虑基于活动的运输模拟器的校准和不确定性分析问题。基于活动的模型(ABM)依靠单个旅行者行为的统计模型来预测大都市地区的高阶旅行模式。输入参数通常是使用最大似然从旅行者调查中估算的。我们开发了一种使用高斯工艺模拟器使用流量流数据校准这些参数的方法。我们的方法扩展了传统的模拟器,以处理运输模拟器的高维和非平稳性。我们介绍了一个深度学习维度降低模型,该模型与高斯工艺模型共同估计以近似模拟器。我们使用几个模拟示例以及校准伊利诺伊州布卢明顿的关键参数来证明方法。
translated by 谷歌翻译
无监督和半监督的ML方法,例如变异自动编码器(VAE),由于其在分离的表述方面的能力以及找到具有复杂实验数据的潜在分类和回归的能力,因此在多个物理,化学和材料科学方面已广泛采用。 。像其他ML问题一样,VAE需要高参数调整,例如,平衡Kullback Leibler(KL)和重建项。但是,训练过程以及由此产生的歧管拓扑和连通性不仅取决于超参数,还取决于训练过程中的演变。由于在高维超参数空间中详尽搜索的效率低下,因此我们在这里探索了一种潜在的贝叶斯优化方法(ZBO)方法,用于用于无监督和半监测的ML的超参数轨迹优化,并证明了连接的ML,并证明VAE具有旋转不变。我们证明了这种方法的应用,用于寻找血浆纳米颗粒材料系统的MNIST和实验数据的联合离散和连续旋转不变表示。已广泛讨论了所提出的方法的性能,它允许对其他ML模型进行任何高维超参数调整或轨迹优化。
translated by 谷歌翻译
神经网络在许多科学学科中发挥着越来越大的作用,包括物理学。变形AutoEncoders(VAE)是能够表示在低维潜空间中的高维数据的基本信息,该神经网络具有概率解释。特别是所谓的编码器网络,VAE的第一部分,其将其输入到潜伏空间中的位置,另外在该位置的方差方面提供不确定性信息。在这项工作中,介绍了对AutoEncoder架构的扩展,渔民。在该架构中,借助于Fisher信息度量,不使用编码器中的附加信息信道生成潜在空间不确定性,而是从解码器导出。这种架构具有来自理论观点的优点,因为它提供了从模型的直接不确定性量化,并且还考虑不确定的交叉相关。我们可以通过实验表明,渔民生产比可比较的VAE更准确的数据重建,并且其学习性能也明显较好地缩放了潜伏空间尺寸的数量。
translated by 谷歌翻译
我们描述了作为黑暗机器倡议和LES Houches 2019年物理学研讨会进行的数据挑战的结果。挑战的目标是使用无监督机器学习算法检测LHC新物理学的信号。首先,我们提出了如何实现异常分数以在LHC搜索中定义独立于模型的信号区域。我们定义并描述了一个大型基准数据集,由> 10亿美元的Muton-Proton碰撞,其中包含> 10亿美元的模拟LHC事件组成。然后,我们在数据挑战的背景下审查了各种异常检测和密度估计算法,我们在一组现实分析环境中测量了它们的性能。我们绘制了一些有用的结论,可以帮助开发无监督的新物理搜索在LHC的第三次运行期间,并为我们的基准数据集提供用于HTTPS://www.phenomldata.org的未来研究。重现分析的代码在https://github.com/bostdiek/darkmachines-unsupervisedChallenge提供。
translated by 谷歌翻译
受数据驱动的超材料设计的启发,该设计范围已成为一种引人注目的范式,可以释放多尺度体系结构的潜力。然而,以模型为中心的研究趋势缺乏专门用于数据获取的原则性框架,其质量传播到下游任务。通常是由天真的空间填充设计在形状描述符空间中建造的,具有高度不平衡或与感兴趣的设计任务相矛盾的属性分布。为此,我们提出了T-Metaset:一个基于积极学习的数据采集框架,旨在指导多样化和任务感知的数据生成。显然,我们在数据驱动的超材料设计的早期阶段寻求解决方案,但经常被忽视的场景:当已经准备了一个纯属性(〜O(10^4))纯形状的库时,没有评估属性。关键的想法是利用从生成模型中学到的数据驱动的形状描述符,适合稀疏回归器作为启动代理商,并利用与多样性相关的指标,以将数据获取推向帮助设计师实现设计目标的领域。我们在三种部署案例中验证了所提出的框架,其中包括一般使用,特定于任务的使用和可量身定制的使用。两个大规模的机械超材料数据集用于证明功效。 T-Metaset适用于基于图像的一般设计表示,可以提高数据驱动设计的未来进步。
translated by 谷歌翻译
概率生成模型对科学建模具有吸引力,因为它们的推论参数可用于生成假设和设计实验。这要求学习的模型提供了对输入数据的准确表示,并产生一个潜在空间,该空间有效地预测了与科学问题相关的结果。监督的变异自动编码器(SVAE)以前已用于此目的,在此目的中,精心设计的解码器可以用作可解释的生成模型,而监督目标可确保预测性潜在表示。不幸的是,监督的目标迫使编码器学习与生成后验分布有偏见的近似,这在科学模型中使用时使生成参数不可靠。由于通常用于评估模型性能的重建损失,因此该问题仍未被发现。我们通过开发一个二阶监督框架(SOS-VAE)来解决这个以前未报告的问题,该框架影响解码器诱导预测潜在的代表。这样可以确保关联的编码器保持可靠的生成解释。我们扩展了此技术,以使用户能够在生成参数中折叠以提高预测性能,并充当SVAE和我们的新SOS-VAE之间的中间选择。我们还使用这种方法来解决在组合来自多个科学实验的录音时经常出现的缺失数据问题。我们使用合成数据和电生理记录来证明这些发展的有效性,重点是如何使用我们学到的表示形式来设计科学实验。
translated by 谷歌翻译
我们介绍了一种组合变分AutiCencoders(VAE)和深度度量学习的方法,以通过高维和结构化输入空间执行贝叶斯优化(BO)。通过从深度度量学习中调整思路,我们使用BlackBox功能的标签指导来构建VAE潜在空间,促进高斯工艺拟合并产生改善的BO性能。重要的是,对于BO问题设置,我们的方法在半监督的制度中运行,其中只有少数标记的数据点。我们在三个现实世界任务中运行实验,在惩罚的LOGP分子生成基准上实现最先进的结果,只使用先前方法所需的标记数据的3%。作为一种理论贡献,我们提出了vae bo遗憾的证据。
translated by 谷歌翻译
变化自动编码器(VAE)最近已用于对复杂密度分布的无监督分离学习。存在许多变体,以鼓励潜在空间中的分解,同时改善重建。但是,在达到极低的重建误差和高度分离得分之间,没有人同时管理权衡。我们提出了一个普遍的框架,可以在有限的优化下应对这一挑战,并证明它在平衡重建时,它优于现有模型的最先进模型。我们介绍了三个可控的拉格朗日超级参数,以控制重建损失,KL差异损失和相关度量。我们证明,重建网络中的信息最大化等于在合理假设和约束放松下摊销过程中的信息最大化。
translated by 谷歌翻译
嵌套辍学是辍学操作的变体,能够根据训练期间的预定义重要性订购网络参数或功能。它已被探索:I。构造嵌套网络:嵌套网是神经网络,可以在测试时间(例如基于计算约束)中立即调整架构的架构。嵌套的辍学者隐含地对网络参数进行排名,生成一组子网络,从而使任何较小的子网络构成较大的子网络的基础。 ii。学习排序表示:应用于生成模型的潜在表示(例如自动编码器)对特征进行排名,从而在尺寸上执行密集表示的明确顺序。但是,在整个训练过程中,辍学率是固定为高参数的。对于嵌套网,当删除网络参数时,性能衰减在人类指定的轨迹中而不是从数据中学到的轨迹中。对于生成模型,特征的重要性被指定为恒定向量,从而限制了表示学习的灵活性。为了解决该问题,我们专注于嵌套辍学的概率对应物。我们提出了一个嵌套掉落(VND)操作,该操作以低成本绘制多维有序掩码的样品,为嵌套掉落的参数提供了有用的梯度。基于这种方法,我们设计了一个贝叶斯嵌套的神经网络,以了解参数分布的顺序知识。我们在不同的生成模型下进一步利用VND来学习有序的潜在分布。在实验中,我们表明所提出的方法在分类任务中的准确性,校准和室外检测方面优于嵌套网络。它还在数据生成任务上胜过相关的生成模型。
translated by 谷歌翻译
用冷冻电子显微镜(Cryo-EM)溶液中生物分子高分辨率成像的近期突破已经解锁了用于重建分子体积的新门,从而有望在其他人之间进一步进一步进展。尽管有很大的入脚,但Cryo-EM数据分析中的巨大挑战仍然是军团和错综复杂的自然间学科,需要物理学家,结构生物学家,计算机科学家,统计学家和应用数学家的见解。同时,最近的下一代卷重建算法与端到端无监督的深度学习技术相结合的生成建模已经显示了对模拟数据的有希望的结果,但在应用于实验Cryo-EM图像时仍然面临相当大的障碍。鉴于此类方法的增殖并鉴于任务的跨学科性质,我们提出了对高分辨率低分辨率建模领域的最近进步的批判性审查。目前的审查旨在(i)比较和对比这些新方法,而(ii)将它们从透视和使用科学家熟悉的术语呈现出来,在任何五个上述领域中没有Cryo-Em中没有具体的背景。审查始于引言介绍低温 - EM批量重建的深度生成模型的数学和计算挑战,同时概述了这类算法中共享的基线方法。通过这些不同的模型建立了常见的线程编织,我们提供了这些最先进的算法的实际比较,突出了它们的相对优势和劣势以及它们依赖的假设。这使我们能够识别当前方法和途径的瓶颈,以便将来的研究。
translated by 谷歌翻译
变异自动编码器(VAE)经常遭受后塌陷,这是一种现象,其中学习过的潜在空间变得无知。这通常与类似于数据差异的高参数有关。此外,如果数据方差不均匀或条件性,则确定这种适当的选择将变得不可行。因此,我们提出了具有数据方差的广义参数化的VAE扩展,并将最大似然估计纳入目标函数中,以适应解码器平滑度。由提议的VAE扩展产生的图像显示,MNIST和Celeba数据集上的Fr \'Echet Inception距离(FID)得到了改善。
translated by 谷歌翻译