由于自我批判性和歧义,了解动态的手动运动和动态动作是一项基本而又具有挑战性的任务。为了解决遮挡和歧义,我们开发了一个基于变压器的框架来利用时间信息以进行稳健的估计。注意到手部姿势估计和动作识别之间的不同时间粒度和语义相关性,我们建立了一个网络层次结构,其中有两个级联变压器编码器,其中第一个利用了短期的时间cue进行手姿势估算,而后者则每次聚集物,后者每次聚集体 - 帧姿势和对象信息在更长的时间范围内识别动作。我们的方法在两个第一人称手动作基准(即FPHA和H2O)上取得了竞争成果。广泛的消融研究验证了我们的设计选择。我们将开放源代码和数据以促进未来的研究。
translated by 谷歌翻译
视频3D人类姿势估计旨在将视频中人类关节的3D坐标定位。最近的基于变压器的方法着重于从顺序2D姿势捕获时空信息,由于在2D姿势估计的步骤中丢失了视觉深度特征,因此无法有效地对上下文深度特征进行建模。在本文中,我们将范式简化为端到端框架,实例引导的视频变压器(IVT),该范式可以有效地从视觉特征中学习时空的上下文深度信息,并直接从视频框架中预测3D姿势。特别是,我们首先将视频框架作为一系列实例引导令牌,每个令牌都可以预测人类实例的3D姿势。这些令牌包含身体结构信息,因为它们是由关节偏移从人体中心到相应身体关节的指导提取的。然后,这些令牌被发送到IVT中,以学习时空的上下文深度。此外,我们提出了一种跨尺度实例引导的注意机制,以处理多个人之间的变异量表。最后,每个人的3D姿势都是通过坐标回归从实例引导的代币中解码的。在三个广泛使用的3D姿势估计基准上进行的实验表明,拟议的IVT实现了最先进的性能。
translated by 谷歌翻译
尽管来自视频的3D人类姿势估算的巨大进展,但是充分利用冗余2D姿势序列来学习用于生成一个3D姿势的代表表示的开放问题。为此,我们提出了一种改进的基于变压器的架构,称为冲压变压器,简单地有效地将长期的2D联合位置升高到单个3D姿势。具体地,采用Vanilla变压器编码器(VTE)来模拟2D姿势序列的远程依赖性。为了减少序列的冗余,vte的前馈网络中的完全连接的层被冲击卷积替换,以逐步缩小序列长度并从本地上下文聚合信息。修改的VTE称为STRIVEIVERCHER ENCODER(STE),其构建在VTE的输出时。 STE不仅有效地将远程信息聚集到分层全球和本地时尚的单载体表示,而且显着降低了计算成本。此外,全序列和单个目标帧尺度都设计了全序,分别适用于VTE和ST的输出。该方案与单个目标帧监督结合施加额外的时间平滑度约束,因此有助于产生更平滑和更准确的3D姿势。所提出的轮廓变压器在两个具有挑战性的基准数据集,Human3.6M和HumanVa-I中进行评估,并通过更少的参数实现最先进的结果。代码和模型可用于\ url {https://github.com/vegetebird/stridedtransformer-pose3d}。
translated by 谷歌翻译
本文介绍了一个新型的预训练的空间时间多对一(p-STMO)模型,用于2D到3D人类姿势估计任务。为了减少捕获空间和时间信息的困难,我们将此任务分为两个阶段:预训练(I期)和微调(II阶段)。在第一阶段,提出了一个自我监督的预训练子任务,称为蒙面姿势建模。输入序列中的人关节在空间和时间域中随机掩盖。利用denoising自动编码器的一般形式以恢复原始的2D姿势,并且编码器能够以这种方式捕获空间和时间依赖性。在第二阶段,将预训练的编码器加载到STMO模型并进行微调。编码器之后是一个多对一的框架聚合器,以预测当前帧中的3D姿势。尤其是,MLP块被用作STMO中的空间特征提取器,其性能比其他方法更好。此外,提出了一种时间下采样策略,以减少数据冗余。在两个基准上进行的广泛实验表明,我们的方法优于较少参数和较少计算开销的最先进方法。例如,我们的P-STMO模型在使用CPN作为输入的2D姿势时,在Human3.6M数据集上达到42.1mm MPJPE。同时,它为最新方法带来了1.5-7.1倍的速度。代码可在https://github.com/patrick-swk/p-stmo上找到。
translated by 谷歌翻译
在互动过程中了解人类的意图一直是一个持久的主题,它在人类机器人互动,虚拟现实和监视中都有应用。在这项研究中,我们专注于与大型每日物体的全身相互作用,并旨在预测对人类对象相互作用的顺序观察,以预测对象和人类的未来状态。由于没有这样的数据集专用于与大型每日物体的全身相互作用,因此我们收集了一个大规模的数据集,其中包含数千种用于培训和评估目的的交互。我们还观察到,对象的固有物理属性对于对象运动预测很有用,因此设计一组对象动态描述符以编码此类内部属性。我们将对象动态描述符视为一种新模式,并提出图形神经网络HO-GCN,以将运动数据和动态描述符为预测任务。我们显示了所提出的网络,消耗动态描述符可以实现最先进的预测结果,并帮助网络更好地推广到看不见的对象。我们还证明了预测结果对人类机器人的合作有用。
translated by 谷歌翻译
单眼3D人姿势估计技术有可能大大增加人类运动数据的可用性。单位图2D-3D提升使用图卷积网络(GCN)的表现最佳模型,通常需要一些手动输入来定义不同的身体关节之间的关系。我们提出了一种基于变压器的新型方法,该方法使用更广泛的自我发场机制来学习代表关节的代币序列。我们发现,使用中间监督以及堆叠编码器福利性能之间的剩余连接。我们还建议,将错误预测作为多任务学习框架的一部分,可以通过允许网络弥补其置信度来改善性能。我们进行广泛的消融研究,以表明我们的每项贡献都会提高性能。此外,我们表明我们的方法的表现超过了最新的单帧3D人类姿势估计的最新技术状态。我们的代码和训练有素的模型可在GitHub上公开提供。
translated by 谷歌翻译
本文提出了一个称为多视图和时间熔断变压器(MTF-Transformer)的统一框架,以适应不同的视图数字和视频长度,而无需在3D人体姿势估计中(HPE)进行摄像机校准。它由特征提取器,多视图融合变压器(MFT)和时间融合变压器(TFT)组成。特征提取器估计每个图像的2D姿势,并根据置信度融合预测。它提供以姿势为中心的功能嵌入,并使随后的模块计算轻量级。 MFT融合了不同数量的视图与新颖的相对注意区块的特征。它适应性地测量了每对视图之间的隐式相对关系,并重建更有信息的特征。 TFT聚集了整个序列的特征,并通过变压器预测3D姿势。它适应地处理任意长度的视频,并将时间信息完全统计。变压器的迁移使我们的模型能够更好地学习空间几何形状,并为不同的应用方案保留鲁棒性。我们报告了360万人类,综合赛和KTH Multiview Football II的定量和定性结果。与带有摄像头参数的最新方法相比,MTF-Transformer获得竞争结果,并以任意数量的看不见的视图良好地概括为动态捕获。
translated by 谷歌翻译
事件摄像头是一种新兴的生物启发的视觉传感器,每像素亮度不同步地变化。它具有高动态范围,高速响应和低功率预算的明显优势,使其能够在不受控制的环境中最好地捕获本地动作。这激发了我们释放事件摄像机进行人姿势估计的潜力,因为很少探索人类姿势估计。但是,由于新型范式从传统的基于框架的摄像机转变,时间间隔中的事件信号包含非常有限的信息,因为事件摄像机只能捕获移动的身体部位并忽略那些静态的身体部位,从而导致某些部位不完整甚至在时间间隔中消失。本文提出了一种新型的密集连接的复发架构,以解决不完整信息的问题。通过这种经常性的体系结构,我们可以明确地对跨时间步骤的顺序几何一致性进行明确模拟,从而从以前的帧中积累信息以恢复整个人体,从而从事件数据中获得稳定且准确的人类姿势估计。此外,为了更好地评估我们的模型,我们收集了一个基于人类姿势注释的大型多模式事件数据集,该数据集是迄今为止我们所知的最具挑战性的数据集。两个公共数据集和我们自己的数据集的实验结果证明了我们方法的有效性和强度。代码可以在线提供,以促进未来的研究。
translated by 谷歌翻译
本文认为共同解决估计3D人体的高度相关任务,并从RGB图像序列预测未来的3D运动。基于Lie代数姿势表示,提出了一种新的自投影机制,自然保留了人类运动运动学。通过基于编码器 - 解码器拓扑的序列到序列的多任务架构进一步促进了这一点,这使我们能够利用两个任务共享的公共场所。最后,提出了一个全球细化模块来提高框架的性能。我们的方法称为PoMomemet的效力是通过消融测试和人文3.6M和Humaneva-I基准的实证评估,从而获得与最先进的竞争性能。
translated by 谷歌翻译
尽管近年来,在无单眼制造商的人类运动捕获上取得了重大进展,但最先进的方法仍然很难在遮挡场景中获得令人满意的结果。有两个主要原因:一个是遮挡的运动捕获本质上是模棱两可的,因为各种3D姿势可以映射到相同的2D观测值,这总是导致不可靠的估计。另一个是没有足够的封闭人类数据可用于训练健壮的模型。为了解决这些障碍,我们的钥匙界是使用非封闭式人类数据来学习以自我监督策略的封闭人类的联合时空运动。为了进一步减少合成数据和实际遮挡数据之间的差距,我们构建了第一个3D遮挡运动数据集〜(Ocmotion),可用于训练和测试。我们在2D地图中编码运动,并在非封闭数据上合成遮挡,以进行自我监督训练。然后,设计空间层层以学习联合级别的相关性。博学的先前降低了闭塞的歧义,并且对各种遮挡类型具有坚固态度,然后采用这些类型来帮助封闭的人类运动捕获。实验结果表明,我们的方法可以从具有良好概括能力和运行时效率的遮挡视频中产生准确且相干的人类动作。数据集和代码可在\ url {https://github.com/boycehbz/chomp}上公开获得。
translated by 谷歌翻译
尽管完全监督的人类骨架序列建模成功,但使用自我监督的预训练进行骨架序列表示学习一直是一个活跃的领域,因为很难在大规模上获取特定于任务的骨骼注释。最近的研究重点是使用对比学习学习视频级别的时间和歧视性信息,但忽略了人类骨骼的层次空间时间。与视频级别的这种表面监督不同,我们提出了一种自我监督的分层预训练方案,该方案纳入了基于层次变压器的骨骼骨骼序列编码器(HI-TRS),以明确捕获空间,短期和长期和长期框架,剪辑和视频级别的时间依赖性分别。为了通过HI-TR评估提出的自我监督预训练方案,我们进行了广泛的实验,涵盖了三个基于骨架的下游任务,包括动作识别,动作检测和运动预测。根据监督和半监督评估协议,我们的方法实现了最新的性能。此外,我们证明了我们的模型在训练阶段中学到的先验知识具有强大的下游任务的转移能力。
translated by 谷歌翻译
人类相互作用的分析是人类运动分析的一个重要研究主题。它已经使用第一人称视觉(FPV)或第三人称视觉(TPV)进行了研究。但是,到目前为止,两种视野的联合学习几乎没有引起关注。原因之一是缺乏涵盖FPV和TPV的合适数据集。此外,FPV或TPV的现有基准数据集具有多个限制,包括样本数量有限,参与者,交互类别和模态。在这项工作中,我们贡献了一个大规模的人类交互数据集,即FT-HID数据集。 FT-HID包含第一人称和第三人称愿景的成对对齐的样本。该数据集是从109个不同受试者中收集的,并具有三种模式的90K样品。该数据集已通过使用几种现有的动作识别方法验证。此外,我们还引入了一种新型的骨骼序列的多视图交互机制,以及针对第一人称和第三人称视野的联合学习多流框架。两种方法都在FT-HID数据集上产生有希望的结果。可以预期,这一视力一致的大规模数据集的引入将促进FPV和TPV的发展,以及他们用于人类行动分析的联合学习技术。该数据集和代码可在\ href {https://github.com/endlichere/ft-hid} {here} {herefichub.com/endlichere.com/endlichere}中获得。
translated by 谷歌翻译
从视频中估算人的姿势对于人类计算机相互作用至关重要。通过精确估计人类姿势,机器人可以对人类提供适当的反应。大多数现有方法都使用光流,RNN或CNN从视频中提取时间功能。尽管这些尝试取得了积极的结果,但其中大多数仅直接整合沿时间维度的特征,而忽略了关节之间的时间相关性。与以前的方法相反,我们提出了一个基于域交叉注意机制的插件运动学建模模块(KMM),以对不同帧的关节之间的时间相关性进行建模。具体而言,提出的KMM通过计算其时间相似性来模拟任意两个关节之间的时间相关性。这样,KMM可以学习每个关节的运动提示。使用运动提示(时间域)和关节的历史位置(空间域),KMM可以提前推断关节的初始位置。此外,我们还基于KMM提出了一个运动学建模网络(KIMNET),用于通过结合姿势特征和关节的初始位置来获得关节的最终位置。通过对关节之间的时间相关性进行显式建模,Kimnet可以根据前一刻的所有关节来推断遮挡的关节。此外,KMM是通过注意机制实现的,该机制使其能够保持高度分辨率。因此,它可以将丰富的历史姿势信息转移到当前框架上,该信息为定位遮挡关节提供了有效的姿势信息。我们的方法在两个基于视频的姿势估计基准的基准上实现了最新的结果。此外,提出的Kimnet对闭塞显示了一些鲁棒性,证明了所提出的方法的有效性。
translated by 谷歌翻译
多个摄像机制造的视频录制的可用性越来越多,为姿势和运动重建方法中的减少和深度歧义提供了新的方法。然而,多视图算法强烈依赖于相机参数;特别地,相机之间的相对介绍。在不受控制的设置中,这种依赖变为一旦转移到动态捕获一次。我们介绍Flex(免费多视图重建),一个端到端的无参数多视图模型。 Flex是无意义的参数,即它不需要任何相机参数,都不是内在的也不是外在的。我们的关键思想是骨架部件和骨长之间的3D角度是不变的相机位置。因此,学习3D旋转和骨长而不是位置允许预测所有相机视图的公共值。我们的网络采用多个视频流,学习通过新型多视图融合层的融合深度特征,并重建单一一致的骨架,其具有时间上相干的关节旋转。我们展示了人类3.6M和KTH多视图足球II数据集的定量和定性结果,以及动态摄像头捕获的合成多人视频流。我们将模型与最先进的方法进行比较,这些方法没有参与参数,并在没有相机参数的情况下显示,我们在获得相机参数可用时获取可比结果的同时优于较大的余量。我们的项目页面上可以使用代码,培训的模型,视频示例和更多材料。
translated by 谷歌翻译
有效地对视频中的空间信息进行建模对于动作识别至关重要。为了实现这一目标,最先进的方法通常采用卷积操作员和密集的相互作用模块,例如非本地块。但是,这些方法无法准确地符合视频中的各种事件。一方面,采用的卷积是有固定尺度的,因此在各种尺度的事件中挣扎。另一方面,密集的相互作用建模范式仅在动作 - 欧元零件时实现次优性能,给最终预测带来了其他噪音。在本文中,我们提出了一个统一的动作识别框架,以通过引入以下设计来研究视频内容的动态性质。首先,在提取本地提示时,我们会生成动态尺度的时空内核,以适应各种事件。其次,为了将这些线索准确地汇总为全局视频表示形式,我们建议仅通过变压器在一些选定的前景对象之间进行交互,从而产生稀疏的范式。我们将提出的框架称为事件自适应网络(EAN),因为这两个关键设计都适应输入视频内容。为了利用本地细分市场内的短期运动,我们提出了一种新颖有效的潜在运动代码(LMC)模块,进一步改善了框架的性能。在几个大规模视频数据集上进行了广泛的实验,例如,某种东西,动力学和潜水48,验证了我们的模型是否在低拖鞋上实现了最先进或竞争性的表演。代码可在:https://github.com/tianyuan168326/ean-pytorch中找到。
translated by 谷歌翻译
我们提出了一个新的变压器模型,用于无监督学习骨架运动序列的任务。用于基于无监督骨骼的动作学习的现有变压器模型被了解到每个关节从相邻帧的瞬时速度没有全球运动信息。因此,该模型在学习全身运动和暂时遥远的关节方面的关注方面存在困难。此外,模型中尚未考虑人与人之间的互动。为了解决全身运动,远程时间动态和人与人之间的互动的学习,我们设计了一种全球和本地的注意机制,在其中,全球身体动作和本地关节运动相互关注。此外,我们提出了一种新颖的预处理策略,即多间隔姿势位移预测,以在不同的时间范围内学习全球和本地关注。提出的模型成功地学习了关节的局部动力学,并从运动序列中捕获了全局上下文。我们的模型优于代表性基准中明显边缘的最先进模型。代码可在https://github.com/boeun-kim/gl-transformer上找到。
translated by 谷歌翻译
来自RGB视频的多人姿势理解包括三个复杂的任务:姿势估计,跟踪和运动预测。在这三个任务中,姿势估计和跟踪是相关的,跟踪对于运动预测至关重要。大多数现有作品要么专注于单个任务,要么采用级联方法来分别解决每个任务。在本文中,我们提出了狙击手,这是一个框架,以同时进行单个推断,同时进行多人3D姿势估计,跟踪和运动预测。具体而言,我们首先提出了一种可变形的注意机制,以从视频片段中汇总时空信息。基于这种可变形的注意力,学会了视觉变压器来编码从多框架图像中的时空特征,并解码信息性姿势功能以更新多人姿势查询。最后,对这些查询进行了回归,以预测一个正向传球中的多人姿势轨迹和未来动作。在实验中,我们显示了狙击手对三个具有挑战性的公共数据集的有效性,在该数据集中,通用模型竞争对手专门的姿势估计,跟踪和预测的最先进基线。代码可在\ href {https://github.com/jimmyzou/snipper} {https://github.com/jimmyzou/snipper}中获得。
translated by 谷歌翻译
捕获关节之间的依赖关系对于基于骨架的动作识别任务至关重要。变压器显示出模拟重要关节相关性的巨大潜力。然而,基于变压器的方法不能捕获帧之间的不同关节的相关性,因此相邻帧之间的不同体部(例如在长跳跃中的臂和腿)一起移动的相关性非常有用。专注于这个问题,提出了一种新的时空组元变压器(Sttformer)方法。骨架序列被分成几个部分,并且每个部分包含的几个连续帧被编码。然后提出了一种时空元组的自我关注模块,以捕获连续帧中不同关节的关系。另外,在非相邻帧之间引入特征聚合模块以增强区分类似动作的能力。与最先进的方法相比,我们的方法在两个大型数据集中实现了更好的性能。
translated by 谷歌翻译
基于纯粹关注的深度神经网络在几个领域中取得了成功,依赖于设计师的最小建筑前瞻性。在人类行动识别(HAR)中,主要是在标准卷积或复发层的顶部采用注意机制,从而提高了整体泛化能力。在这项工作中,我们介绍了动作变压器(ACT),这是一种简单的完全自我注意的架构,可以始终如一地优于混合卷积,复发和周度的更详细的网络。为了限制计算和能量请求,建立以前的人类行动识别研究,所提出的方法利用小型时间窗口的2D姿势表示,为准确且有效的实时性能提供低延迟解决方案。此外,我们开源MOMES2021是一个新的大规模数据集,作为建立正式培训和评估基准的实时短时哈哈。拟议的方法在MOMY2021上广泛测试,并与几个最先进的架构相比,证明了行为模型的有效性并铺设了未来工作的基础。
translated by 谷歌翻译
在分析人类运动视频时,来自现有姿势估计器的输出抖动是高度不平衡的。大多数帧只遭受轻微的傻瓜,而在那些具有遮挡或图像质量差的框架中发生了重要的困难。这种复杂的姿势通常持续存在于视频中,导致估计结果差和大型抖动的连续帧。现有的基于时间卷积网络,经常性神经网络或低通滤波器的现有姿态平滑解决方案不能处理这种长期抖动问题,而不考虑抖动视频段内的显着和持久的错误。通过上述观察,我们提出了一种新颖的即插即用细化网络,即光滑网络,可以附加到任何现有的姿势估计,以提高其时间平滑度,同时提高其每个帧精度。特别是,SmoothNet是一个简单而有效的数据驱动的全连接网络,具有大的接收领域,有效地减轻了长期抖动与不可靠的估计结果的影响。我们在十二个骨干网络上进行广泛的实验,跨越2D和3D姿势估算,身体恢复和下游任务。我们的结果表明,所提出的光滑网络始终如一地优于现有的解决方案,尤其是具有高误差和长期抖动的夹子。
translated by 谷歌翻译