本文考虑了使用户能够修改远程介绍机器人的路径的问题。该机器人能够自动导航到用户预定的目标,但是用户可能仍然希望修改路径,例如,远离其他人,或者更靠近她想在途中看到的地标。我们提出了人类影响的动态窗口方法(HI-DWA),这是一种基于动态窗口方法(DWA)的远程置换机器人的共享控制方法,该方法允许用户影响给予机器人的控制输入。为了验证所提出的方法,我们在虚拟现实(VR)中进行了用户研究(n = 32),以将HI-DWA与自主导航和手动控制之间的切换进行比较,以控制在虚拟环境中移动的模拟远程机器人。结果表明,用户使用HI-DWA控制器更快地实现了目标,并发现更容易使用。两种方法之间的偏好平均分配。定性分析表明,首选两种模式之间切换的参与者的主要原因是控制感。我们还分析了不同输入方法,操纵杆和手势,对偏好和感知工作量的影响。
translated by 谷歌翻译
在本文中,我们介绍了基于差异驱动器快照机器人和模拟的用户研究的基于倾斜的控制的实现,目的是将相同的功能带入真正的远程介绍机器人。参与者使用平衡板来控制机器人,并通过头部安装的显示器查看了虚拟环境。使用平衡板作为控制装置的主要动机源于虚拟现实(VR)疾病;即使是您自己的身体与屏幕上看到的动作相匹配的小动作也降低了视力和前庭器官之间的感觉冲突,这是大多数关于VR疾病发作的理论的核心。为了检验平衡委员会作为控制方法的假设比使用操纵杆要少可恶意,我们设计了一个用户研究(n = 32,15名女性),参与者在虚拟环境中驾驶模拟差异驱动器机器人, Nintendo Wii平衡板或操纵杆。但是,我们的预注册的主要假设不得到支持。操纵杆并没有使参与者引起更多的VR疾病,而委员会在统计学上的主观和客观性上都更加难以使用。分析开放式问题表明这些结果可能是有联系的,这意味着使用的困难似乎会影响疾病。即使在测试之前的无限训练时间也没有像熟悉的操纵杆那样容易使用。因此,使董事会更易于使用是启用其潜力的关键。我们为这个目标提供了一些可能性。
translated by 谷歌翻译
我们建议展开沉浸式远程呈现机器人的用户所经历的轮换,以改善用户的舒适度并减少VR疾病。通过沉浸式远程呈现,我们指的是移动机器人顶部的360 \ TextDegree〜相机的情况将视频和音频流入遥远用户遥远的远程用户佩戴的头戴式展示中。因此,它使得用户能够在机器人的位置处存在,通过转动头部并与机器人附近的人进行通信。通过展开相机框架的旋转,当机器人旋转时,用户的观点不会改变。用户只能通过在其本地设置中物理旋转来改变她的观点;由于没有相应的前庭刺激的视觉旋转是VR疾病的主要来源,预计用户的物理旋转将减少VR疾病。我们实现了展开遍历虚拟环境的模拟机器人的旋转,并将用户学习(n = 34)进行比较,将展开旋转与机器人转弯时的ViewPoint转向。我们的研究结果表明,用户发现更优选且舒适的展开转动,并降低了他们的VR疾病水平。我们还进一步提出了关于用户路径集成功能,观看方向和机器人速度和距离的主观观察到模拟人员和对象的结果。
translated by 谷歌翻译
工业机器人的机器人编程方法是耗时的,并且通常需要运营商在机器人和编程中具有知识。为了降低与重新编程相关的成本,最近已经提出了使用增强现实的各种接口,为用户提供更直观的手段,可以实时控制机器人并在不必编码的情况下编程它们。但是,大多数解决方案都要求操作员接近真正的机器人的工作空间,这意味着由于安全危险而从生产线上移除它或关闭整个生产线。我们提出了一种新颖的增强现实界面,提供了用户能够建模工作空间的虚拟表示,该工作空间可以被保存和重复使用,以便编程新任务或调整旧任务,而无需与真正的机器人共同定位。与以前的接口类似,操作员随后可以通过操纵虚拟机器人来实时地控制机器人任务或控制机器人。我们评估所提出的界面与用户学习的直观和可用性,其中18名参与者为拆卸任务编写了一个机器人操纵器。
translated by 谷歌翻译
Teleperation已成为全自动系统,以实现人类机器人的人体水平能力的替代解决方案。具体而言,全身控制的远程运行是指挥类人动物的有前途的无提手术策略,但需要更多的身体和心理努力。为了减轻这一限制,研究人员提出了共享控制方法,结合了机器人决策,以帮助人类完成低级任务,从而进一步减少了运营工作。然而,尚未探索用于全身级别的人型类人形端粒体的共享控制方法。在这项工作中,我们研究了全身反馈如何影响不同环境中不同共享控制方法的性能。提出了时间衍生的Sigmoid功能(TDSF),以产生障碍物的更直观的力反馈。进行了全面的人类实验,结果得出的结论是,力反馈增强了在不熟悉的环境中的全身端粒化表现,但可以在熟悉的环境中降低性能。通过触觉传达机器人的意图显示出进一步的改进,因为操作员可以将力反馈用于短途计划和视觉反馈进行长距离计划。
translated by 谷歌翻译
由于其在崎rough的地形中的高机动性和遍历性,四倍的平台已成为一个积极的研究主题。但是,确定机器人是否可以通过裂缝环境以及如何准确计算其路径是高度挑战。此外,计算出的路径可能会穿过具有动态物体或环境对机器人或周围人危险的区域。因此,我们提出了一种新颖的概念方法,即通过虚拟现实(VR)中的用户指导路径计划进行教学四倍的机器人导航。我们的系统包含全球和本地路径计划者,使机器人可以通过学习的迭代来生成路径。 VR接口允许用户与环境进行交互,并在具有挑战性的情况下协助四足机器人。比较实验的结果表明,人与路径计划算法之间的合作可以使算法的计算速度平均增加35.58%,并且在测试方案中,路径长度(平均6.66%)的非急剧增加。此外,用户将VR接口描述为不需要物理需求(10中的2.3),并高度评估了其性能(10中的7.1分)。寻找不太最佳但更安全的路径的能力仍然需要在混乱和非结构化的环境中导航的任务。
translated by 谷歌翻译
对于机器人来说,在人口稠密地区的自主航行仍然是一项艰巨的任务,因为难以确保在非结构化情况下与行人进行安全互动。在这项工作中,我们提出了一个人群导航控制框架,该框架可在自动驾驶汽车上提供连续避免障碍物和接触后控制。我们建议评估指标,以了解自然人群中的会计效率,控制器响应和人群相互作用。我们报告了不同人群类型的110多种试验的结果:稀疏,流量和混合流量,低 - (<0.15 ppsm),中部(<0.65 ppsm)和高 - (<1 ppsm)的行人密度。我们提出了两种低级避免障碍方法与共享控制基线之间的比较结果。结果表明,在最高密度测试上,相对时间下降了10%,没有其他效率度量降低。此外,自主导航显示与共享控制导航相当,相对混蛋较低,命令的流利度明显更高,表明与人群的兼容性很高。我们得出的结论是,反应性控制器履行了对人群导航的快速和连续适应的必要任务,并且应该与高级计划者一起以进行环境和情境意识。
translated by 谷歌翻译
随着机器人越来越多地进入以人为本的环境,他们不仅必须能够在人类周围安全地浏览,还必须遵守复杂的社会规范。人类通常在围绕他人围绕他人(尤其是在密集占据的空间中)时,通常通过手势和面部表情依靠非语言交流。因此,机器人还需要能够将手势解释为解决社会导航任务的一部分。为此,我们提出了一种新型的社会导航方法,将基于图像的模仿学习与模型预测性控制结合在一起。手势是基于在图像流中运行的神经网络来解释的,而我们使用最先进的模型预测控制算法来求解点对点导航任务。我们将方法部署在真实的机器人上,并展示我们的方法对四个手势游动场景的有效性:左/右,跟随我,然后圈出一个圆圈。我们的实验表明,我们的方法能够成功地解释复杂的人类手势,并将其用作信号,以生成具有社会符合性的导航任务的轨迹。我们基于与机器人相互作用的参与者的原位等级验证了我们的方法。
translated by 谷歌翻译
当代机器人主义者的主要目标之一是使智能移动机器人能够在共享的人类机器人环境中平稳运行。为此目标服务的最基本必要的功能之一是在这种“社会”背景下有效的导航。结果,最近的一般社会导航的研究激增,尤其是如何处理社会导航代理之间的冲突。这些贡献介绍了各种模型,算法和评估指标,但是由于该研究领域本质上是跨学科的,因此许多相关论文是不可比较的,并且没有共同的标准词汇。这项调查的主要目标是通过引入这种通用语言,使用它来调查现有工作并突出开放问题来弥合这一差距。它首先定义社会导航的冲突,并提供其组成部分的详细分类学。然后,这项调查将现有工作映射到了本分类法中,同时使用其框架讨论论文。最后,本文提出了一些未来的研究方向和开放问题,这些方向目前正在社会导航的边界,以帮助集中于正在进行的和未来的研究。
translated by 谷歌翻译
在人类居住的环境中使用机器人的挑战是设计对人类互动引起的扰动且鲁棒的设计行为。我们的想法是用内在动机(IM)拟订机器人,以便它可以处理新的情况,并作为人类的真正社交,因此对人类互动伙伴感兴趣。人机互动(HRI)实验主要关注脚本或远程机器人,这是模拟特性,如IM来控制孤立的行为因素。本文介绍了一个“机器人学家”的研究设计,允许比较自主生成的行为彼此,而且首次评估机器人中基于IM的生成行为的人类感知。我们在受试者内部用户学习(n = 24),参与者与具有不同行为制度的完全自主的Sphero BB8机器人互动:一个实现自适应,本质上动机的行为,另一个是反应性的,但不是自适应。机器人及其行为是故意最小的,以专注于IM诱导的效果。与反应基线行为相比,相互作用后问卷的定量分析表明对尺寸“温暖”的显着提高。温暖被认为是人类社会认知中社会态度形成的主要维度。一种被认为是温暖(友好,值得信赖的)的人体验更积极的社交互动。
translated by 谷歌翻译
人类在交流何时和何时发生的何时和何处的意图方面非常熟练。但是,即使是最先进的机器人实现,通常缺乏这种交流技巧。这项研究调查了使用增强现实的机器人内部状态的可视化和对人向机器人移交的意图。具体而言,我们探讨了对象和机器人抓手的可视化3D模型的使用,以传达机器人对物体所在位置的估计以及机器人打算掌握对象的姿势。我们通过16名参与者的用户研究测试了这一设计,其中每个参与者将一个立方体对象交给机器人12次。结果表明,通过增强现实的通信机器人意图基本上改善了用户对移交的感知体验。结果还表明,当机器人在定位对象时犯错时,增强现实的有效性对于相互作用的安全性和交互的流利性更加明显。
translated by 谷歌翻译
移动服务机器人变得越来越无处不在。但是,这些机器人可能对视觉障碍者(PVI)提出潜在的可访问性问题和安全问题。我们试图探索PVI在主流移动服务机器人方面面临的挑战,并确定其需求。对他们在三个新兴机器人的经历进行了采访,接受了17个PVI:真空机器人,送货机器人和无人机。我们通过考虑其围绕机器人的不同角色(直接用户和旁观者)来全面研究PVI的机器人体验。我们的研究强调了参与者对移动服务机器人访问性,安全性和隐私问题的挑战和担忧。我们发现缺乏可访问的反馈使PVI难以精确控制,定位和跟踪机器人的状态。此外,遇到移动机器人时,旁观者感到困惑,甚至吓到参与者,并呈现安全性和隐私障碍。我们进一步提炼设计注意事项,以提供PVI的更容易访问和安全的机器人。
translated by 谷歌翻译
本文提出了一种移动超级机器人方法,可在人类机器人结合的行动中进行身体援助。该研究从对超人概念的描述开始。这个想法是开发和利用可以遵循人类机器人操作命令的移动协作系统,通过三个主要组件执行工业任务:i)物理界面,ii)人类机器人互动控制器和iii)超级机器人身体。接下来,我们从理论和硬件的角度介绍了框架内的两个可能的实现。第一个系统称为MOCA-MAN,由冗余的扭矩控制机器人组和Omni方向移动平台组成。第二个称为Kairos-Man,由高付费6多速速度控制机器人组和Omni方向移动平台形成。该系统共享相同的接收界面,通过该接口将用户扳手转换为Loco-andipulation命令,该命令由每个系统的全身控制器生成。此外,提出了一个具有多个和跨性别主题的彻底用户研究,以揭示这两个系统在努力和灵活的任务中的定量性能。此外,我们提供了NASA-TLX问卷的定性结果,以证明超级人物的潜力及其从用户的观点中的可接受性。
translated by 谷歌翻译
农业面临着劳动危机,导致人们对小型,伪造机器人(AGBOTS)的兴趣增加,这些机器人可以执行精确的,有针对性的行动(例如,农作物侦察,除草,受精),同时由人类操作员进行监督。但是,农民不一定是机器人技术方面的专家,也不会采用增加其工作量的技术或不提供立即回报的技术。在这项工作中,我们探讨了远程人类操作员与多个Agbot之间进行通信的方法,并研究音频通信对操作员的偏好和生产率的影响。我们开发了一个模拟平台,在该平台中,AGBOT在一个字段中部署,随机遇到故障,并呼吁操作员寻求帮助。随着AGBOTS报告错误,测试了各种音频通信机制,以传达哪种机器人失败以及发生了什么类型的故障。人类的任务是在完成次要任务时口头诊断失败。进行了一项用户研究,以测试三种音频通信方法:耳塞,单短语命令和完整的句子通信。每个参与者都完成了一项调查,以确定他们的偏好和每种方法的总体效率。我们的结果表明,使用单个短语的系统是参与者最积极的看法,可以使人更有效地完成次要任务。该代码可在以下网址获得:https://github.com/akamboj2/agbot-sim。
translated by 谷歌翻译
谷仓(基准自动驾驶机器人导航)挑战在宾夕法尼亚州费城的2022年IEEE国际机器人和自动化国际会议(ICRA 2022)举行。挑战的目的是评估最先进的自动地面导航系统,以安全有效的方式将机器人通过高度约束的环境移动。具体而言,任务是将标准化的差分驱动地面机器人从预定义的开始位置导航到目标位置,而不会与模拟和现实世界中的任何障碍相撞。来自世界各地的五支球队参加了合格的模拟比赛,其中三支受邀在费城会议中心的一组身体障碍课程中相互竞争。竞争结果表明,尽管表面上显得简单,即使对于经验丰富的机器人主义者来说,在高度约束空间中的自主地面导航实际上远非解决问题。在本文中,我们讨论了挑战,前三名获胜团队所使用的方法以及学到的教训以指导未来的研究。
translated by 谷歌翻译
人类可以利用身体互动来教机器人武器。当人类的动力学通过示范引导机器人时,机器人学习了所需的任务。尽管先前的工作重点是机器人学习方式,但对于人类老师来说,了解其机器人正在学习的内容同样重要。视觉显示可以传达此信息;但是,我们假设仅视觉反馈就错过了人与机器人之间的物理联系。在本文中,我们介绍了一类新颖的软触觉显示器,这些显示器包裹在机器人臂上,添加信号而不会影响相互作用。我们首先设计一个气动驱动阵列,该阵列在安装方面保持灵活。然后,我们开发了这种包裹的触觉显示的单一和多维版本,并在心理物理测试和机器人学习过程中探索了人类对渲染信号的看法。我们最终发现,人们以11.4%的韦伯(Weber)分数准确区分单维反馈,并以94.5%的精度确定多维反馈。当物理教授机器人臂时,人类利用单维反馈来提供比视觉反馈更好的演示:我们包装的触觉显示会降低教学时间,同时提高演示质量。这种改进取决于包裹的触觉显示的位置和分布。您可以在此处查看我们的设备和实验的视频:https://youtu.be/ypcmgeqsjdm
translated by 谷歌翻译
Designing a local planner to control tractor-trailer vehicles in forward and backward maneuvering is a challenging control problem in the research community of autonomous driving systems. Considering a critical situation in the stability of tractor-trailer systems, a practical and novel approach is presented to design a non-linear MPC(NMPC) local planner for tractor-trailer autonomous vehicles in both forward and backward maneuvering. The tractor velocity and steering angle are considered to be control variables. The proposed NMPC local planner is designed to handle jackknife situations, avoiding multiple static obstacles, and path following in both forward and backward maneuvering. The challenges mentioned above are converted into a constrained problem that can be handled simultaneously by the proposed NMPC local planner. The direct multiple shooting approach is used to convert the optimal control problem(OCP) into a non-linear programming problem(NLP) that IPOPT solvers can solve in CasADi. The controller performance is evaluated through different backup and forward maneuvering scenarios in the Gazebo simulation environment in real-time. It achieves asymptotic stability in avoiding static obstacles and accurate tracking performance while respecting path constraints. Finally, the proposed NMPC local planner is integrated with an open-source autonomous driving software stack called AutowareAi.
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
我们提出了一种新方法,用于在使用机器人运动计划中使用技术的静态和动态场景中的重定向方法来计算转向用户在物理空间中的无碰撞路径上的重定向增益。我们的第一个贡献是使用来自运动规划和配置空间的概念重定向的数学框架。该框架突出了各种几何和感知的限制,倾向于使无碰撞重定向行走困难。我们使用我们的框架提出了一个有效的解决方案,以便重定向问题使用可见性多边形的概念来计算物理环境和虚拟环境中的自由空间。可见性多边形提供了可见的整个空间的简明表示,并且因此可以从环境内的位置到用户。使用可行性空间的表示,我们应用重定向步行以将用户转向物理环境中的可见性多边形区域,该区域与用户占据虚拟环境中的可见性多边形中的区域密切相关。我们表明我们的算法能够沿着路径转向用户,这些路径导致比静态和动态场景中的现有最先进的算法显着更少的重置。我们的项目网站可在https://gamma.umd.edu/vis_poly/提供。
translated by 谷歌翻译
情绪可以提供自然的交流方式,以补充许多领域中社交机器人(例如文本和语音)现有的多模式能力。我们与112、223和151名参与者进行了三项在线研究,以调查使用情绪作为搜救(SAR)机器人的交流方式的好处。在第一个实验中,我们研究了通过机器人的情绪传达与SAR情况有关的信息的可行性,从而导致了从SAR情况到情绪的映射。第二项研究使用控制控制理论是推导此类映射的替代方法。此方法更灵活,例如允许对不同的情绪集和不同机器人进行调整。在第三个实验中,我们使用LED作为表达通道为外观受限的室外现场研究机器人创建了情感表达。在各种模拟的SAR情况下,使用这些情感表达式,我们评估了这些表达式对参与者(采用救援人员的作用)的影响。我们的结果和提议的方法提供了(a)有关情感如何帮助在SAR背景下传达信息的见解,以及(b)在(模拟)SAR通信环境中添加情绪为传播方式的有效性的证据。
translated by 谷歌翻译