Teleperation已成为全自动系统,以实现人类机器人的人体水平能力的替代解决方案。具体而言,全身控制的远程运行是指挥类人动物的有前途的无提手术策略,但需要更多的身体和心理努力。为了减轻这一限制,研究人员提出了共享控制方法,结合了机器人决策,以帮助人类完成低级任务,从而进一步减少了运营工作。然而,尚未探索用于全身级别的人型类人形端粒体的共享控制方法。在这项工作中,我们研究了全身反馈如何影响不同环境中不同共享控制方法的性能。提出了时间衍生的Sigmoid功能(TDSF),以产生障碍物的更直观的力反馈。进行了全面的人类实验,结果得出的结论是,力反馈增强了在不熟悉的环境中的全身端粒化表现,但可以在熟悉的环境中降低性能。通过触觉传达机器人的意图显示出进一步的改进,因为操作员可以将力反馈用于短途计划和视觉反馈进行长距离计划。
translated by 谷歌翻译
Haptic feedback can improve safety of teleoperated robots when situational awareness is limited or operators are inattentive. Standard potential field approaches increase haptic resistance as an obstacle is approached, which is desirable when the operator is unaware of the obstacle but undesirable when the movement is intentional, such as when the operator wishes to inspect or manipulate an object. This paper presents a novel haptic teleoperation framework that estimates the operator's attentiveness to dampen haptic feedback for intentional movement. A biologically-inspired attention model is developed based on computational working memory theories to integrate visual saliency estimation with spatial mapping. This model generates an attentiveness map in real-time, and the haptic rendering system generates lower haptic forces for obstacles that the operator is estimated to be aware of. Experimental results in simulation show that the proposed framework outperforms haptic teleoperation without attentiveness estimation in terms of task performance, robot safety, and user experience.
translated by 谷歌翻译
本文考虑了使用户能够修改远程介绍机器人的路径的问题。该机器人能够自动导航到用户预定的目标,但是用户可能仍然希望修改路径,例如,远离其他人,或者更靠近她想在途中看到的地标。我们提出了人类影响的动态窗口方法(HI-DWA),这是一种基于动态窗口方法(DWA)的远程置换机器人的共享控制方法,该方法允许用户影响给予机器人的控制输入。为了验证所提出的方法,我们在虚拟现实(VR)中进行了用户研究(n = 32),以将HI-DWA与自主导航和手动控制之间的切换进行比较,以控制在虚拟环境中移动的模拟远程机器人。结果表明,用户使用HI-DWA控制器更快地实现了目标,并发现更容易使用。两种方法之间的偏好平均分配。定性分析表明,首选两种模式之间切换的参与者的主要原因是控制感。我们还分析了不同输入方法,操纵杆和手势,对偏好和感知工作量的影响。
translated by 谷歌翻译
开发人类机器人协作控制模型的一个重要因素是它们对人类伴侣的接受程度。创建可接受的控制模型的一种这样的方法是尝试模仿机器人中的类似人类的行为,以使他们的行为对人类更加直观。为了调查任务复杂性如何影响人类机器人合作伙伴的感知和接受,我们提出了一种新型的基于人类的机器人控制模型,以避免障碍,该模型可以解释通常在人类协作中发生的领导者陪伴动力学。使用避免障碍的场景评估了建议的控制方法的性能和接受,在该方案中,我们将单个任务和协作任务之间的任务绩效与机器人合作伙伴的不同领导者动力学角色进行了比较。评估结果表明,机器人控制方法能够复制人类行为,以提高受试者协作的总体任务绩效。但是,关于机器人合作伙伴的接受,参与者的意见混合在一起。与针对不太复杂的任务开发的类似控制方法的研究结果相比,新的结果表明,即使从动态角度来看,控制方法适应了更复杂的任务,对拟议的控制模型的接受程度较低。这表明,手头协作任务的复杂性不仅增加了更复杂的控制模型的需求,而且还增加了具有社会胜任的控制模型的需求。
translated by 谷歌翻译
在这项研究中,提出了一个自适应对象可变形性不足的人类机器人协作运输框架。提出的框架使通过对象传输的触觉信息与从运动捕获系统获得的人类运动信息结合在一起,以在移动协作机器人上产生反应性的全身运动。此外,它允许基于算法在共同转移过程中以直观而准确的方式旋转对象,该算法使用躯干和手动运动检测人旋转意图。首先,我们通过使用由Omni方向移动基础和协作机器人组组成的移动操纵器,通过对象变形范围的两个末端(即纯粹的铝制杆和高度变形绳)来验证框架。接下来,将其性能与12个受试者用户研究中部分可变形对象的共同携带任务中的录取控制器进行了比较。该实验的定量和定性结果表明,所提出的框架可以有效地处理物体的运输,而不管其可变形性如何,并为人类伴侣提供直观的援助。最后,我们在不同的情况下展示了我们的框架的潜力,在不同的情况下,人类和机器人使用可变形的床单共同传输了手工蛋白。
translated by 谷歌翻译
许多社会机器人技术研究人员正在解决的一个问题是如何在机器人中创建更类似人类的行为,以使人类与机器人之间对人类伴侣更直观的合作。但是,为了开发类似人类的协作机器人系统,首先必须更好地理解人类的协作。人类的合作是我们所有人都熟悉的事情,但是从运动学的角度来看,对此并不了解。例如,一种尚未进行彻底研究的动态,但自然而然地发生在人类的合作中,例如领导者追随者的动态。在我们先前的研究中,我们解决了在协作达到任务期间人类二元组中领导者的角色分配的问题,结果暗示,在个人实验中表现较高的受试者自然会在身体协作中承担领导者的角色。在这项研究中,我们通过观察协作任务变得更加复杂时观察到领导者的前进动力如何改变了人类二元组中的领导者角色分配研究。在这里,这项研究是针对达到任务的,在执行2D达到任务时,二元组中的一个主题面临着避免障碍的额外任务,而他们的伴侣则不知道障碍。我们发现,受试者在整个任务中都改变了角色,以便成功完成任务,但是考虑到整个任务领导者,表现较高的人总是在表现较低的人中始终占主导地位,无论他们是否知道其他任务是否避免障碍。
translated by 谷歌翻译
在移动机器人学中,区域勘探和覆盖率是关键能力。在大多数可用研究中,共同的假设是全球性,远程通信和集中合作。本文提出了一种新的基于群的覆盖控制算法,可以放松这些假设。该算法组合了两个元素:Swarm规则和前沿搜索算法。受到大量简单代理(例如,教育鱼,植绒鸟类,蜂拥昆虫)的自然系统的启发,第一元素使用三个简单的规则来以分布式方式维持群体形成。第二元素提供了选择有希望区域以使用涉及代理的相对位置的成本函数的最小化来探索(和覆盖)的装置。我们在不同环境中测试了我们的方法对异质和同质移动机器人的性能。我们衡量覆盖性能和允许本集团维持沟通的覆盖性能和群体形成统计数据。通过一系列比较实验,我们展示了拟议的策略在最近提出的地图覆盖方法和传统的人工潜在领域基于细胞覆盖,转变和安全路径的百分比,同时保持允许短程的形成沟通。
translated by 谷歌翻译
由于其在崎rough的地形中的高机动性和遍历性,四倍的平台已成为一个积极的研究主题。但是,确定机器人是否可以通过裂缝环境以及如何准确计算其路径是高度挑战。此外,计算出的路径可能会穿过具有动态物体或环境对机器人或周围人危险的区域。因此,我们提出了一种新颖的概念方法,即通过虚拟现实(VR)中的用户指导路径计划进行教学四倍的机器人导航。我们的系统包含全球和本地路径计划者,使机器人可以通过学习的迭代来生成路径。 VR接口允许用户与环境进行交互,并在具有挑战性的情况下协助四足机器人。比较实验的结果表明,人与路径计划算法之间的合作可以使算法的计算速度平均增加35.58%,并且在测试方案中,路径长度(平均6.66%)的非急剧增加。此外,用户将VR接口描述为不需要物理需求(10中的2.3),并高度评估了其性能(10中的7.1分)。寻找不太最佳但更安全的路径的能力仍然需要在混乱和非结构化的环境中导航的任务。
translated by 谷歌翻译
由于钻孔对准的困难以及任务的固有不稳定性,在手动完成时,在弯曲的表面上钻一个孔很容易失败,可能会对工人造成伤害和疲劳。另一方面,在实际制造环境中充分自动化此类任务可能是不切实际的,因为到达装配线的零件可以具有各种复杂形状,在这些零件上不容易访问钻头位置,从而使自动化路径计划变得困难。在这项工作中,开发并部署了一个具有6个自由度的自适应入学控制器,并部署在Kuka LBR IIWA 7配件上,使操作员能够用一只手舒适地在机器人上安装在机器人上的钻头,并在弯曲的表面上开放孔,并在弯曲的表面上开放孔。通过AR界面提供的玉米饼和视觉指导的触觉指导。接收阻尼的实时适应性在自由空间中驱动机器人时,可以在确保钻孔过程中稳定时提供更高的透明度。用户将钻头足够靠近钻头目标并大致与所需的钻探角度对齐后,触觉指导模块首先对对齐进行微调,然后将用户运动仅限于钻孔轴,然后操作员仅将钻头推动钻头以最小的努力进入工件。进行了两组实验,以定量地研究触觉指导模块的潜在好处(实验I),以及根据参与者的主观意见(实验II),提出的用于实际制造环境的PHRI系统的实际价值。
translated by 谷歌翻译
我们提出了一种新方法,用于在使用机器人运动计划中使用技术的静态和动态场景中的重定向方法来计算转向用户在物理空间中的无碰撞路径上的重定向增益。我们的第一个贡献是使用来自运动规划和配置空间的概念重定向的数学框架。该框架突出了各种几何和感知的限制,倾向于使无碰撞重定向行走困难。我们使用我们的框架提出了一个有效的解决方案,以便重定向问题使用可见性多边形的概念来计算物理环境和虚拟环境中的自由空间。可见性多边形提供了可见的整个空间的简明表示,并且因此可以从环境内的位置到用户。使用可行性空间的表示,我们应用重定向步行以将用户转向物理环境中的可见性多边形区域,该区域与用户占据虚拟环境中的可见性多边形中的区域密切相关。我们表明我们的算法能够沿着路径转向用户,这些路径导致比静态和动态场景中的现有最先进的算法显着更少的重置。我们的项目网站可在https://gamma.umd.edu/vis_poly/提供。
translated by 谷歌翻译
在过去的几十年中,对生物启发的智能及其对机器人技术的应用非常关注。本文对生物启发的智能进行了全面的调查,重点是神经动力学方法,尤其是对自主机器人系统的路径计划和控制。首先,引入了以生物启发的分流模型及其变体(添加剂模型和门控偶极模型),并详细介绍其主要特征。然后,回顾了实时路径计划和各种机器人系统控制的两个主要神经动力学应用。一个以神经动力学模型为特征的生物启发的神经网络框架,用于移动机器人,清洁机器人和水下机器人。生物启发的神经网络已在无碰撞导航和合作中广泛使用,没有任何学习程序,全球成本功能以及动态环境的先验知识。此外,还进一步讨论了针对各种机器人系统的生物启发的后台控制器,这些控制器能够在发生较大的初始跟踪误差时消除速度跳跃。最后,本文讨论了当前的挑战和未来的研究方向。
translated by 谷歌翻译
室内运动计划的重点是解决通过混乱环境导航代理的问题。迄今为止,在该领域已经完成了很多工作,但是这些方法通常无法找到计算廉价的在线路径计划和路径最佳之间的最佳平衡。除此之外,这些作品通常证明是单一启动单目标世界的最佳性。为了应对这些挑战,我们为在未知室内环境中进行导航的多个路径路径计划者和控制器堆栈,在该环境中,路点将目标与机器人必须在达到目标之前必须穿越的中介点一起。我们的方法利用全球规划师(在任何瞬间找到下一个最佳航路点),本地规划师(计划通往特定航路点的路径)以及自适应模型预测性控制策略(用于强大的系统控制和更快的操作) 。我们在一组随机生成的障碍图,中间航路点和起始目标对上评估了算法,结果表明计算成本显着降低,具有高度准确性和可靠的控制。
translated by 谷歌翻译
本文提出了一种移动超级机器人方法,可在人类机器人结合的行动中进行身体援助。该研究从对超人概念的描述开始。这个想法是开发和利用可以遵循人类机器人操作命令的移动协作系统,通过三个主要组件执行工业任务:i)物理界面,ii)人类机器人互动控制器和iii)超级机器人身体。接下来,我们从理论和硬件的角度介绍了框架内的两个可能的实现。第一个系统称为MOCA-MAN,由冗余的扭矩控制机器人组和Omni方向移动平台组成。第二个称为Kairos-Man,由高付费6多速速度控制机器人组和Omni方向移动平台形成。该系统共享相同的接收界面,通过该接口将用户扳手转换为Loco-andipulation命令,该命令由每个系统的全身控制器生成。此外,提出了一个具有多个和跨性别主题的彻底用户研究,以揭示这两个系统在努力和灵活的任务中的定量性能。此外,我们提供了NASA-TLX问卷的定性结果,以证明超级人物的潜力及其从用户的观点中的可接受性。
translated by 谷歌翻译
本文着重于影响弹性的移动机器人的碰撞运动计划和控制的新兴范式转移,并开发了一个统一的层次结构框架,用于在未知和部分观察的杂物空间中导航。在较低级别上,我们开发了一种变形恢复控制和轨迹重新启动策略,该策略处理可能在本地运行时发生的碰撞。低级系统会积极检测碰撞(通过内部内置的移动机器人上的嵌入式霍尔效应传感器),使机器人能够从其内部恢复,并在本地调整后影响后的轨迹。然后,在高层,我们提出了一种基于搜索的计划算法,以确定如何最好地利用潜在的碰撞来改善某些指标,例如控制能量和计算时间。我们的方法建立在A*带有跳跃点的基础上。我们生成了一种新颖的启发式功能,并进行了碰撞检查和调整技术,从而使A*算法通过利用和利用可能的碰撞来更快地收敛到达目标。通过将全局A*算法和局部变形恢复和重新融合策略以及该框架的各个组件相结合而生成的整体分层框架在模拟和实验中都经过了广泛的测试。一项消融研究借鉴了与基于搜索的最先进的避免碰撞计划者(用于整体框架)的链接,以及基于搜索的避免碰撞和基于采样的碰撞 - 碰撞 - 全球规划师(对于更高的较高的碰撞 - 等级)。结果证明了我们的方法在未知环境中具有碰撞的运动计划和控制的功效,在2D中运行的一类撞击弹性机器人具有孤立的障碍物。
translated by 谷歌翻译
由于事件的范围有限,在复杂且高度可变的环境中,避免路径计划和碰撞是具有挑战性的。在文献中,有多种基于模型和学习的方法需要有效地部署大量的计算资源,并且可能具有有限的一般性。我们提出了一种基于全球稳定的被动控制器的计划算法,该算法可以在挑战性的环境条件下使用有限的计算资源计划平滑轨迹。该体系结构将最近提出的分形阻抗控制器与有限时间不变性区域结合在一起。由于该方法基于阻抗控制器,因此它也可以直接用作力/扭矩控制器。我们在模拟中验证了我们的方法,以通过发放Via-toints的发行及其对低带宽反馈的稳健性来分析互动导航在挑战凹域中的能力。使用11个代理的群模拟验证了所提出方法的可扩展性。我们已经在自动式轮式平台上进行了硬件实验,以验证与动态剂(即人和机器人)相互作用的平滑度和稳健性。与依赖数字优化的其他方法相比,所提出的本地规划师的计算复杂性可以通过低功率微控制器的部署降低能源消耗。
translated by 谷歌翻译
导航动态环境要求机器人生成无碰撞的轨迹,并积极避免移动障碍。大多数以前的作品都基于一个单个地图表示形式(例如几何,占用率或ESDF地图)设计路径计划算法。尽管他们在静态环境中表现出成功,但由于地图表示的限制,这些方法无法同时可靠地处理静态和动态障碍。为了解决该问题,本文提出了一种利用机器人在板载视觉的基于梯度的B-Spline轨迹优化算法。深度视觉使机器人能够基于体素图以几何形式跟踪和表示动态对象。拟议的优化首先采用基于圆的指南算法,以近似避免静态障碍的成本和梯度。然后,使用视觉检测的移动对象,我们的后水平距离场同时用于防止动态碰撞。最后,采用迭代重新指导策略来生成无碰撞轨迹。仿真和物理实验证明,我们的方法可以实时运行以安全地导航动态环境。
translated by 谷歌翻译
可以指导人们并避免各种障碍的四足动物指导机器人,有可能以相当低的成本拥有更多视力障碍的人拥有。在本文中,我们提出了一个具有基于舒适概念的新型指导机器人系统。我们设计了一个包含弹性绳索和细绳的皮带,并使用电动机调节绳子的长度以确保舒适度。我们使用基于力的人类运动模型来计划人类所经历的力量。之后,力的方向和大小分别由机器人的运动和电动机的旋转控制。这使得人类可以安全,更舒适地引导到复杂环境中的目标位置。该系统已部署在Unitree Laikago四倍平台上,并在现实情况下进行了验证。
translated by 谷歌翻译
动态运动是机器人武器的关键特征,使他们能够快速有效地执行任务。在任务空间运行时,软连续式操纵器目前尚未考虑动态参数。这种缺点使现有的软机器人缓慢并限制了他们处理外力的能力,特别是在物体操纵期间。我们通过使用动态操作空间控制来解决此问题。我们的控制方法考虑了3D连续体臂的动态参数,并引入了新模型,使多段软机械师能够在任务空间中顺利运行。先前仅为刚性机器人提供的先进控制方法现在适用于软机器;例如,潜在的场避免以前仅针对刚性机器人显示,现在延伸到软机器人。使用我们的方法,柔软的机械手现在可以实现以前不可能的各种任务:我们评估机械手在闭环控制实验中的性能,如拾取和障碍物避免,使用附加的软夹具抛出物体,并通过用掌握的粉笔绘制来故意将力施加到表面上。除了新的技能之外,我们的方法还提高了59%的跟踪精度,并将速度提高到19.3的尺寸,与最新的任务空间控制相比。通过这些新发现能力,软机器人可以开始挑战操纵领域的刚性机器人。我们固有的安全和柔顺的软机器人将未来的机器人操纵到一个不用的设置,其中人和机器人并行工作。
translated by 谷歌翻译
对于机器人来说,在人口稠密地区的自主航行仍然是一项艰巨的任务,因为难以确保在非结构化情况下与行人进行安全互动。在这项工作中,我们提出了一个人群导航控制框架,该框架可在自动驾驶汽车上提供连续避免障碍物和接触后控制。我们建议评估指标,以了解自然人群中的会计效率,控制器响应和人群相互作用。我们报告了不同人群类型的110多种试验的结果:稀疏,流量和混合流量,低 - (<0.15 ppsm),中部(<0.65 ppsm)和高 - (<1 ppsm)的行人密度。我们提出了两种低级避免障碍方法与共享控制基线之间的比较结果。结果表明,在最高密度测试上,相对时间下降了10%,没有其他效率度量降低。此外,自主导航显示与共享控制导航相当,相对混蛋较低,命令的流利度明显更高,表明与人群的兼容性很高。我们得出的结论是,反应性控制器履行了对人群导航的快速和连续适应的必要任务,并且应该与高级计划者一起以进行环境和情境意识。
translated by 谷歌翻译
我们描述了更改 - 联系机器人操作任务的框架,要求机器人与对象和表面打破触点。这种任务的不连续交互动态使得难以构建和使用单个动力学模型或控制策略,并且接触变化期间动态的高度非线性性质可能对机器人和物体造成损害。我们提出了一种自适应控制框架,使机器人能够逐步学习以预测更改联系人任务中的接触变化,从而了解了碎片连续系统的交互动态,并使用任务空间可变阻抗控制器提供平滑且精确的轨迹跟踪。我们通过实验比较我们框架的表现,以确定所需的代表性控制方法,以确定我们框架的自适应控制和增量学习组件需要在变化 - 联系机器人操纵任务中存在不连续动态的平稳控制。
translated by 谷歌翻译