在这项研究中,提出了一个自适应对象可变形性不足的人类机器人协作运输框架。提出的框架使通过对象传输的触觉信息与从运动捕获系统获得的人类运动信息结合在一起,以在移动协作机器人上产生反应性的全身运动。此外,它允许基于算法在共同转移过程中以直观而准确的方式旋转对象,该算法使用躯干和手动运动检测人旋转意图。首先,我们通过使用由Omni方向移动基础和协作机器人组组成的移动操纵器,通过对象变形范围的两个末端(即纯粹的铝制杆和高度变形绳)来验证框架。接下来,将其性能与12个受试者用户研究中部分可变形对象的共同携带任务中的录取控制器进行了比较。该实验的定量和定性结果表明,所提出的框架可以有效地处理物体的运输,而不管其可变形性如何,并为人类伴侣提供直观的援助。最后,我们在不同的情况下展示了我们的框架的潜力,在不同的情况下,人类和机器人使用可变形的床单共同传输了手工蛋白。
translated by 谷歌翻译
在这项工作中,我们介绍了一个自适应控制框架,用于具有未知变形行为的对象的人类机器人协作运输。提出的框架将通过对象传输的触觉信息和从运动捕获系统获得的人体的运动学信息作为输入,以在移动协作机器人上创建反应性的全身运动。为了通过实验验证我们的框架,我们在部分可变形的对象的共同投资任务中将其性能与入学控制器进行了比较。我们还展示了框架的潜力,同时共同传输刚性(铝杆)和高度变形(绳索)对象。一个由Omni方向移动基础,协作机器人组和机器人手组成的移动操纵器被用作实验中的机器人合作伙伴。 12个受试者实验的定量和定性结果表明,所提出的框架可以有效地处理不明变形的对象,并为人类伴侣提供直观的援助。
translated by 谷歌翻译
该手稿介绍了一个对象可变形性框架框架,用于共享一个人和多个机器人之间共享的任务。我们的方法可以根据对象的大小和重量与多个机器人共享负载,从而完全控制人的共同轨迹。这是通过合并通过对象传递的触觉信息和从运动捕获系统获得的人类运动信息来实现的。该框架的一个重要优点是,无论对象大小和变形特征如何,机器人之间不需要严格的内部通信。我们使用两个具有挑战性的现实场景来验证框架:木质刚性壁橱的共同投资和叉车移动带上的笨重盒子,后者是可变形物体的。为了评估所提出的框架的普遍性,由两个移动操纵器组成的异源团队由Omni方向移动基础组成,并为实验选择了具有不同DOF的协作机器人组。在这些实验过程中,我们的控制器和基线控制器(即入学控制器)之间的定性比较证明了提出的框架的有效性,尤其是在共同携带可变形物体时。此外,我们认为,在实验中使用起重带的框架的性能为共同运输的笨重和不可覆盖的物体提供了有希望的解决方案。
translated by 谷歌翻译
本文提出了一种移动超级机器人方法,可在人类机器人结合的行动中进行身体援助。该研究从对超人概念的描述开始。这个想法是开发和利用可以遵循人类机器人操作命令的移动协作系统,通过三个主要组件执行工业任务:i)物理界面,ii)人类机器人互动控制器和iii)超级机器人身体。接下来,我们从理论和硬件的角度介绍了框架内的两个可能的实现。第一个系统称为MOCA-MAN,由冗余的扭矩控制机器人组和Omni方向移动平台组成。第二个称为Kairos-Man,由高付费6多速速度控制机器人组和Omni方向移动平台形成。该系统共享相同的接收界面,通过该接口将用户扳手转换为Loco-andipulation命令,该命令由每个系统的全身控制器生成。此外,提出了一个具有多个和跨性别主题的彻底用户研究,以揭示这两个系统在努力和灵活的任务中的定量性能。此外,我们提供了NASA-TLX问卷的定性结果,以证明超级人物的潜力及其从用户的观点中的可接受性。
translated by 谷歌翻译
远程运行是一种广泛采用的策略,用于控制需要高度灵巧运动和关键高级智力的复杂任务的机器人操纵器。经典的远程操作方案基于操纵杆的控制,或基于更直观的接口,这些界面将用户臂运动直接映射到一个机器人臂的运动中。当执行给定任务需要可重新配置的多个机器人ARM系统时,这些方法会限制。实际上,两个或多个机器人臂的同时进行近距离运行可以扩展操纵单元的工作空间,或增加其总有效载荷或提供其他优势。在可重新配置的多臂系统的不同阶段中,每个机器人可以充当独立的手臂,也可以充当一对合作的手臂,或者是虚拟大型机器人手的手指之一。该手稿提出了一个新型的远程注射框架,可以使个人和组合任何数量的机器人臂控制。多亏了设计的控制体系结构,人类操作员可以直观地选择提出的控制方式和操纵器,以使任务方便地通过用户界面执行。此外,通过Tele-Tele-Inverance范式,该系统可以通过让机器人模仿人类操作员的手臂阻抗和位置参考来解决需要物理互动的复杂任务。拟议的框架已通过8个主题,控制4个弗兰卡·埃米卡·熊猫机器人,并用7多杆执行远程触发任务。实验的定性结果向我们展示了我们框架的有希望的适用性。
translated by 谷歌翻译
本文提出了一种以非零速度的效果友好型捕捉对象的混合优化和学习方法。通过受约束的二次编程问题,该方法生成最佳轨迹,直至机器人和对象之间的接触点,以最小化其相对速度并减少初始影响力。接下来,生成的轨迹是由基于人类的捕捉演示的旋风动作原始词更新的,以确保围绕接口点的平稳过渡。此外,学习的人类可变刚度(HVS)被发送到机器人的笛卡尔阻抗控制器,以吸收后影响力并稳定捕获位置。进行了三个实验,以将我们的方法与固定位置阻抗控制器(FP-IC)进行比较。结果表明,所提出的方法的表现优于FP-IC,同时添加HVS可以更好地吸收影响后力。
translated by 谷歌翻译
Robotic teleoperation is a key technology for a wide variety of applications. It allows sending robots instead of humans in remote, possibly dangerous locations while still using the human brain with its enormous knowledge and creativity, especially for solving unexpected problems. A main challenge in teleoperation consists of providing enough feedback to the human operator for situation awareness and thus create full immersion, as well as offering the operator suitable control interfaces to achieve efficient and robust task fulfillment. We present a bimanual telemanipulation system consisting of an anthropomorphic avatar robot and an operator station providing force and haptic feedback to the human operator. The avatar arms are controlled in Cartesian space with a direct mapping of the operator movements. The measured forces and torques on the avatar side are haptically displayed to the operator. We developed a predictive avatar model for limit avoidance which runs on the operator side, ensuring low latency. The system was successfully evaluated during the ANA Avatar XPRIZE competition semifinals. In addition, we performed in lab experiments and carried out a small user study with mostly untrained operators.
translated by 谷歌翻译
本文为复杂和物理互动的任务提供了用于移动操纵器的混合学习和优化框架。该框架利用了入学型物理接口,以获得直观而简化的人类演示和高斯混合模型(GMM)/高斯混合物回归(GMR),以根据位置,速度和力剖面来编码和生成学习的任务要求。接下来,使用GMM/GMR生成的所需轨迹和力剖面,通过用二次程序加强能量箱增强笛卡尔阻抗控制器的阻抗参数可以在线优化,以确保受控系统的消极性。进行了两个实验以验证框架,将我们的方法与两种恒定刚度(高和低)的方法进行了比较。结果表明,即使在存在诸如意外的最终效应碰撞等干扰的情况下,该方法在轨迹跟踪和生成的相互作用力方面都优于其他两种情况。
translated by 谷歌翻译
In this paper, we propose a unified whole-body control framework for velocity-controlled mobile collaborative robots which can distribute task motion into the arm and mobile base according to specific task requirements by adjusting weighting factors. Our framework focuses on addressing two challenging issues in whole-body coordination: 1) different dynamic characteristics of the mobile base and the arm; 2) avoidance of violating both safety and configuration constraints. In addition, our controller involves Coupling Dynamic Movement Primitives to enable the essential capabilities for collaboration and interaction applications, such as obstacle avoidance, human teaching, and compliance control. Based on these, we design an adaptive motion mode for intuitive physical human-robot interaction through adjusting the weighting factors. The proposed controller is in closed-form and thus quite computationally efficient. Several typical experiments carried out on a real mobile collaborative robot validate the effectiveness of the proposed controller.
translated by 谷歌翻译
使机器人能够靠近人类工作,需要一个控制框架,该框架不仅包括用于自主和协调的交互的多感官信息,而且还具有感知的任务计划,以确保适应性和灵活的协作行为。在这项研究中,提出了一种直观的任务堆叠(ISOT)制剂,通过考虑人臂姿势和任务进展来定义机器人的动作。该框架以visuo-tactive信息增强,以有效地了解协作环境,直观地在计划的子任务之间切换。来自深度摄像机的视觉反馈监视并估计物体的姿势和人臂姿势,而触觉数据提供勘探技能以检测和维持所需的触点以避免物体滑动。为了评估由人类和人机合作伙伴执行的所提出的框架,装配和拆卸任务的性能,有效性和可用性,使用不同的评估指标进行考虑和分析,方法适应,掌握校正,任务协调延迟,累积姿势偏差,以及任务重复性。
translated by 谷歌翻译
本文对人机对象切换的文献进行了调查。切换是一种协作的关节动作,其中代理人,给予者,给予对象给另一代理,接收器。当接收器首先与给予者持有的对象并结束时,当给予者完全将物体释放到接收器时,物理交换开始。然而,重要的认知和物理过程在物理交换之前开始,包括在交换的位置和时间内启动隐含协议。从这个角度来看,我们将审核构成了上述事件界定的两个主要阶段:1)预切换阶段和2)物理交流。我们专注于两位演员(Giver和Receiver)的分析,并报告机器人推动者(机器人到人类切换)和机器人接收器(人到机器人切换)的状态。我们举报了常用于评估互动的全面的定性和定量度量列表。虽然将我们的认知水平(例如,预测,感知,运动规划,学习)和物理水平(例如,运动,抓握,抓取释放)的审查重点,但我们简要讨论了安全的概念,社会背景,和人体工程学。我们将在人对人物助手中显示的行为与机器人助手的最新进行比较,并确定机器人助剂的主要改善领域,以达到与人类相互作用相当的性能。最后,我们提出了一种应使用的最小度量标准,以便在方法之间进行公平比较。
translated by 谷歌翻译
医疗机器人技术可以帮助改善和扩大医疗服务的影响力。医疗机器人的一个主要挑战是机器人与患者之间的复杂物理相互作用是必须安全的。这项工作介绍了基于医疗应用中分形阻抗控制(FIC)的最近引入的控制体系结构的初步评估。部署的FIC体系结构在主机和复制机器人之间延迟很强。它可以在接纳和阻抗行为之间在线切换,并且与非结构化环境的互动是强大的。我们的实验分析了三种情况:远程手术,康复和远程超声扫描。实验不需要对机器人调整进行任何调整,这在操作员没有调整控制器所需的工程背景的医疗应用中至关重要。我们的结果表明,可以使用手术刀进行切割机器人,进行超声扫描并进行远程职业治疗。但是,我们的实验还强调了需要更好的机器人实施例,以精确控制3D动态任务中的系统。
translated by 谷歌翻译
全渠道的人类授权移动操纵器是一个实验平台,用于测试自动和人为多动物移动操作的控制体系结构。全渠道由mecanum-wheel全向移动基础和系列弹性三角型平行操纵器组成,它是一类更广泛的移动协作机器人(“ mocobots”)的特定实现,灵活和明确的有效载荷。 Mocobot的关键特征包括被动依从性,为人类的安全和有效载荷的安全性以及高保真的最终效应力控制,而与移动基础的潜在不精确运动无关。我们描述了Mocobots团队设计的一般考虑;根据这些考虑因素的设计;操纵器和移动基础控制器,以实现有用的多机器人协作行为;以及对大型,笨拙的有效载荷的人类多机协作移动操作进行的最初实验。对于这些实验,通过有效载荷,人类和全网络之间的唯一沟通是机械的。
translated by 谷歌翻译
由于钻孔对准的困难以及任务的固有不稳定性,在手动完成时,在弯曲的表面上钻一个孔很容易失败,可能会对工人造成伤害和疲劳。另一方面,在实际制造环境中充分自动化此类任务可能是不切实际的,因为到达装配线的零件可以具有各种复杂形状,在这些零件上不容易访问钻头位置,从而使自动化路径计划变得困难。在这项工作中,开发并部署了一个具有6个自由度的自适应入学控制器,并部署在Kuka LBR IIWA 7配件上,使操作员能够用一只手舒适地在机器人上安装在机器人上的钻头,并在弯曲的表面上开放孔,并在弯曲的表面上开放孔。通过AR界面提供的玉米饼和视觉指导的触觉指导。接收阻尼的实时适应性在自由空间中驱动机器人时,可以在确保钻孔过程中稳定时提供更高的透明度。用户将钻头足够靠近钻头目标并大致与所需的钻探角度对齐后,触觉指导模块首先对对齐进行微调,然后将用户运动仅限于钻孔轴,然后操作员仅将钻头推动钻头以最小的努力进入工件。进行了两组实验,以定量地研究触觉指导模块的潜在好处(实验I),以及根据参与者的主观意见(实验II),提出的用于实际制造环境的PHRI系统的实际价值。
translated by 谷歌翻译
为了成为人类的有效伴侣,机器人必须越来越舒适地与环境接触。不幸的是,机器人很难区分``足够的''和``太多''力:完成任务需要一些力量,但太多可能会损害设备或伤害人类。设计合规的反馈控制器(例如刚度控制)的传统方法需要对控制参数进行手工调整,并使建立安全,有效的机器人合作者变得困难。在本文中,我们提出了一种新颖而易于实现的力反馈控制器,该反馈控制器使用控制屏障功能(CBF)直接从用户的最大允许力和扭矩的用户规格中得出合并的控制器。我们比较了传统僵硬控制的方法,以证明控制架构的潜在优势,并在人类机器人协作任务中证明了控制器的有效性:对笨重对象的合作操纵。
translated by 谷歌翻译
中枢神经系统(CNS)利用预期(APA)和补偿性(CPA)的姿势调整以保持平衡。姿势调整包括质量中心的稳定性(COM)(COM)和身体的压力分布相互影响,如果存在他们俩缺乏表现。任何可预测的或突然的扰动都可能为COM与平衡和身体的均匀压力分布的分歧铺平道路。由于其不良的APA和CPA,并引起了它们的跌倒。神经系统患者跌倒风险的最小化方法正在利用基于扰动的康复,因为它有效地恢复了平衡障碍。根据发现的结果,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现,我们的发现是有效的。介绍新型3 DOF平行操纵器的设计,实现和实验评估,以治疗M. M.的平衡障碍,机器人平台允许角运动脚踝基于其拟人化的自由。赋予上下平台的最终效应分别旨在评估每只脚的压力分布和身体的com。在机器人平台的高级控制中,用于调节任务的难度水平。在这项研究中,在模拟环境中得出并验证了机器人的运动学和动态分析。还通过PID控制器成功实现了对原型的低级控制。每个平台的容量都通过一组实验来评估,考虑评估最终效应器上的脚注和类似对象的压力分布和COM。实验结果表明,这样的系统井井有条,需要通过APA和CPA进行平衡技能培训和评估。
translated by 谷歌翻译
外骨骼和矫形器是可穿戴移动系统,为用户提供机械益处。尽管在过去几十年中有重大改进,但该技术不会完全成熟,以便采用剧烈和非编程任务。为了适应这种功能不全,需要分析和改进该技术的不同方面。许多研究一直在努力解决外骨骼的某些方面,例如,机构设计,意向预测和控制方案。但是,大多数作品都专注于设计或应用的特定元素,而无需提供全面的审查框架。本研究旨在分析和调查为改进和广泛采用这项技术的贡献方面。为了解决此问题,在引入辅助设备和外骨骼后,将从物理人员 - 机器人接口(HRI)的角度来研究主要的设计标准。通过概述不同类别的已知辅助设备的几个例子,将进一步开发该研究。为了建立智能HRI策略并为用户提供直观的控制,将研究认知HRI。将审查这种策略的各种方法,并提出了意图预测的模型。该模型用于从单个电拍摄(EMG)通道输入的栅极相位。建模结果显示出低功耗辅助设备中单通道输入的潜在使用。此外,所提出的模型可以在具有复杂控制策略的设备中提供冗余。
translated by 谷歌翻译
机器人布操作是自动机器人系统的相关挑战性问题。高度可变形的对象,因为纺织品在操纵过程中可以采用多种配置和形状。因此,机器人不仅应该了解当前的布料配置,还应能够预测布的未来行为。本文通过使用模型预测控制(MPC)策略在对象的其他部分应用动作,从而解决了间接控制纺织对象某些点的配置的问题,该策略还允许间接控制的行为点。设计的控制器找到了最佳控制信号,以实现所需的未来目标配置。本文中的探索场景考虑了通过抓住其上角,以平方布的下角跟踪参考轨迹。为此,我们提出并验证线性布模型,该模型允许实时解决与MPC相关的优化问题。增强学习(RL)技术用于学习所提出的布模型的最佳参数,并调整所得的MPC。在模拟中获得准确的跟踪结果后,在真实的机器人中实现并执行了完整的控制方案,即使在不利条件下也可以获得准确的跟踪。尽管总观察到的误差达到5 cm标记,但对于30x30 cm的布,分析表明,MPC对该值的贡献少于30%。
translated by 谷歌翻译
与工作有关的肌肉骨骼障碍(WMSDS)仍然是欧盟的主要职业安全和健康问题。因此,持续追踪工人对可能导致其发展有贡献的因素的暴露是至关重要的。本文介绍了一种在线方法来监控工人上的运动和动态数量,提供当天在日常工作中所需的物理负荷的估计。定义了一套符合人体工程学的指标,以考虑对WMSD的多个潜在贡献者,也重视工人的主题特定要求。为了评估拟议的框架,考虑到在制造业中代表典型工作活动的任务,对十二人受试者进行了彻底的实验分析。对于每个任务,在统计分析之后,识别更好地解释底层物理负荷的符合人体工程学指标,并通过表面肌电图(SEMG)分析的结果支持。还通过公认的和标准工具进行了比较,以评估工作场所的人体工程学,突出所提出的框架引入的益处。结果证明了拟议框架在识别物理危险因素方面的高潜力,从而采取预防措施。该研究的另一个同样重要的贡献是在人类血管动力学测量中创建一个综合数据库,该测量涉及执行典型工业任务的健康受试者的多个感官数据。
translated by 谷歌翻译
We present a generalised architecture for reactive mobile manipulation while a robot's base is in motion toward the next objective in a high-level task. By performing tasks on-the-move, overall cycle time is reduced compared to methods where the base pauses during manipulation. Reactive control of the manipulator enables grasping objects with unpredictable motion while improving robustness against perception errors, environmental disturbances, and inaccurate robot control compared to open-loop, trajectory-based planning approaches. We present an example implementation of the architecture and investigate the performance on a series of pick and place tasks with both static and dynamic objects and compare the performance to baseline methods. Our method demonstrated a real-world success rate of over 99%, failing in only a single trial from 120 attempts with a physical robot system. The architecture is further demonstrated on other mobile manipulator platforms in simulation. Our approach reduces task time by up to 48%, while also improving reliability, gracefulness, and predictability compared to existing architectures for mobile manipulation. See https://benburgesslimerick.github.io/ManipulationOnTheMove for supplementary materials.
translated by 谷歌翻译