在工业和服务域中,使用机器人的主要好处是它们快速可靠地执行重复性任务的能力。但是,即使是相对简单的孔洞任务,通常也会受到随机变化的影响,需要搜索运动才能找到相关的功能,例如孔。尽管搜索提高了鲁棒性,但它以增加运行时的成本为代价:更详尽的搜索将最大化成功执行给定任务的可能性,但会大大延迟任何下游任务。根据简单的启发式方法,这种权衡通常由人类专家解决,这些启发式很少是最佳的。本文介绍了一种自动,数据驱动和无启发式方法,以优化机器人搜索策略。通过训练搜索策略的神经模型在一系列模拟随机环境上,在几个现实世界中的示例中进行调节并颠倒模型,我们可以推断出适应了基本概率分布的时间变化特征,同时需要很少的现实测量。在螺旋和探测器搜索电子组件的背景下,我们评估了对两个不同工业机器人的方法。
translated by 谷歌翻译
可以通过组合单个机器人技能来有效地解决具有挑战性的操纵任务,该技巧必须用于具体的物理环境和手头的任务。对于人类程序员来说,这是耗时的,尤其是针对力控制的技能。为此,我们提出了阴影程序反演(SPI),这是一种直接从数据推断最佳技能参数的新方法。 SPI利用无监督的学习来训练辅助区分程序表示(“影子程序”),并通过基于梯度的模型反转实现参数推断。我们的方法使使用高效的一阶优化器可以推断出最初非差异技能的最佳参数,包括当前生产中使用的许多技能变体。 SPI零射击跨任务目标概括,这意味着不需要对阴影程序进行重新训练来推断不同任务变体的参数。我们在工业和家庭场景中评估了三个不同的机器人和技能框架的方法。代码和示例可在https://innolab.artiminds.com/icra2021上找到。
translated by 谷歌翻译
在本次调查中,我们介绍了执行需要不同于环境的操作任务的机器人的当前状态,使得机器人必须隐含地或明确地控制与环境的接触力来完成任务。机器人可以执行越来越多的人体操作任务,并且在1)主题上具有越来越多的出版物,其执行始终需要联系的任务,并且通过利用完美的任务来减轻环境来缓解不确定性信息,可以在没有联系的情况下进行。最近的趋势已经看到机器人在留下的人类留给人类,例如按摩,以及诸如PEG孔的经典任务中,对其他类似任务的概率更有效,更好的误差容忍以及更快的规划或学习任务。因此,在本调查中,我们涵盖了执行此类任务的机器人的当前阶段,从调查开始所有不同的联系方式机器人可以执行,观察这些任务是如何控制和表示的,并且最终呈现所需技能的学习和规划完成这些任务。
translated by 谷歌翻译
机器人技能系统旨在减少机器人设置时间的新制造任务。但是,对于灵巧,接触术的任务,通常很难找到正确的技能参数。一种策略是通过允许机器人系统直接学习任务来学习这些参数。对于学习问题,机器人操作员通常可以指定参数值的类型和范围。然而,鉴于他们先前的经验,机器人操作员应该能够通过提供有关在参数空间中找到最佳解决方案的知识猜测,从而进一步帮助学习过程。有趣的是,当前的机器人学习框架中没有利用这种先验知识。我们介绍了一种结合用户先验和贝叶斯优化的方法,以便在机器人部署时间快速优化机器人工业任务。我们在模拟中学习的三个任务以及直接在真实机器人系统上学习的两个任务中学习了我们的方法。此外,我们通过自动从良好表现的配置中自动构造先验来从相应的仿真任务中转移知识,以在真实系统上学习。为了处理潜在的任务目标,任务被建模为多目标问题。我们的结果表明,操作员的先验是用户指定和转移的,大大加快了富丽堂皇的阵线的发现,并且通常产生的最终性能远远超过了拟议的基线。
translated by 谷歌翻译
我们考虑使用最低限度的努力与人类机器人团队一起完成一组$ n $任务的问题。在许多领域中,如果有许多任务有限的任务,教机器人完全自主可能会适得其反。相反,最佳策略是权衡教授机器人及其好处的成本 - 它允许机器人自动解决多少新任务。我们将其作为规划问题提出,目的是确定机器人应自动执行的任务(ACT),应将哪些任务委派给人类(委托)以及应教授机器人的哪些任务(学习)以完成所有给定的任务都以最小的努力。这个计划问题导致搜索树以$ n $成倍增长 - 使标准图形搜索算法难以理解。我们通过将问题转换为混合整数程序来解决这个问题,该程序可以使用固定求解器有效地解决解决方案质量的范围。为了预测学习的好处,我们提出了一个先进的预测分类器。给定两个任务,该分类器预测接受培训的技能是否会转移到另一个。最后,我们在模拟和现实世界中评估了有关PEG插入和乐高堆叠任务的方法,显示了人类努力的大量节省。
translated by 谷歌翻译
从意外的外部扰动中恢复的能力是双模型运动的基本机动技能。有效的答复包括不仅可以恢复平衡并保持稳定性的能力,而且在平衡恢复物质不可行时,也可以保证安全的方式。对于与双式运动有关的机器人,例如人形机器人和辅助机器人设备,可帮助人类行走,设计能够提供这种稳定性和安全性的控制器可以防止机器人损坏或防止伤害相关的医疗费用。这是一个具有挑战性的任务,因为它涉及用触点产生高维,非线性和致动系统的高动态运动。尽管使用基于模型和优化方法的前进方面,但诸如广泛领域知识的要求,诸如较大的计算时间和有限的动态变化的鲁棒性仍然会使这个打开问题。在本文中,为了解决这些问题,我们开发基于学习的算法,能够为两种不同的机器人合成推送恢复控制政策:人形机器人和有助于双模型运动的辅助机器人设备。我们的工作可以分为两个密切相关的指示:1)学习人形机器人的安全下降和预防策略,2)使用机器人辅助装置学习人类的预防策略。为实现这一目标,我们介绍了一套深度加强学习(DRL)算法,以学习使用这些机器人时提高安全性的控制策略。
translated by 谷歌翻译
深度学习的兴起导致机器人研究中的范式转变,有利于需要大量数据的方法。在物理平台上生成这样的数据集是昂贵的。因此,最先进的方法在模拟中学习,其中数据生成快速以及廉价并随后将知识转移到真实机器人(SIM-to-Real)。尽管变得越来越真实,但所有模拟器都是基于模型的施工,因此不可避免地不完善。这提出了如何修改模拟器以促进学习机器人控制政策的问题,并克服模拟与现实之间的不匹配,通常称为“现实差距”。我们对机器人学的SIM-Teal研究提供了全面的审查,专注于名为“域随机化”的技术,这是一种从随机仿真学习的方法。
translated by 谷歌翻译
机器人和与世界相互作用或互动的机器人和智能系统越来越多地被用来自动化各种任务。这些系统完成这些任务的能力取决于构成机器人物理及其传感器物体的机械和电气部件,例如,感知算法感知环境,并计划和控制算法以生产和控制算法来生产和控制算法有意义的行动。因此,通常有必要在设计具体系统时考虑这些组件之间的相互作用。本文探讨了以端到端方式对机器人系统进行任务驱动的合作的工作,同时使用推理或控制算法直接优化了系统的物理组件以进行任务性能。我们首先考虑直接优化基于信标的本地化系统以达到本地化准确性的问题。设计这样的系统涉及将信标放置在整个环境中,并通过传感器读数推断位置。在我们的工作中,我们开发了一种深度学习方法,以直接优化信标的放置和位置推断以达到本地化精度。然后,我们将注意力转移到了由任务驱动的机器人及其控制器优化的相关问题上。在我们的工作中,我们首先提出基于多任务增强学习的数据有效算法。我们的方法通过利用能够在物理设计的空间上概括设计条件的控制器,有效地直接优化了物理设计和控制参数,以直接优化任务性能。然后,我们对此进行跟进,以允许对离散形态参数(例如四肢的数字和配置)进行优化。最后,我们通过探索优化的软机器人的制造和部署来得出结论。
translated by 谷歌翻译
Learning generalizable insertion skills in a data-efficient manner has long been a challenge in the robot learning community. While the current state-of-the-art methods with reinforcement learning (RL) show promising performance in acquiring manipulation skills, the algorithms are data-hungry and hard to generalize. To overcome the issues, in this paper we present Prim-LAfD, a simple yet effective framework to learn and adapt primitive-based insertion skills from demonstrations. Prim-LAfD utilizes black-box function optimization to learn and adapt the primitive parameters leveraging prior experiences. Human demonstrations are modeled as dense rewards guiding parameter learning. We validate the effectiveness of the proposed method on eight peg-hole and connector-socket insertion tasks. The experimental results show that our proposed framework takes less than one hour to acquire the insertion skills and as few as fifteen minutes to adapt to an unseen insertion task on a physical robot.
translated by 谷歌翻译
在本文中,我们关注将基于能量的模型(EBM)作为运动优化的指导先验的问题。 EBM是一组神经网络,可以用合适的能量函数参数为参数的GIBBS分布来表示表达概率密度分布。由于其隐含性,它们可以轻松地作为优化因素或运动优化问题中的初始采样分布整合在一起,从而使它们成为良好的候选者,以将数据驱动的先验集成在运动优化问题中。在这项工作中,我们提出了一组所需的建模和算法选择,以使EBMS适应运动优化。我们调查了将其他正规化器在学习EBM中的好处,以将它们与基于梯度的优化器一起使用,并提供一组EBM架构,以学习用于操纵任务的可通用分布。我们提出了多种情况,可以将EBM集成以进行运动优化,并评估学到的EBM的性能,以指导模拟和真实机器人实验的指导先验。
translated by 谷歌翻译
Policy search methods can allow robots to learn control policies for a wide range of tasks, but practical applications of policy search often require hand-engineered components for perception, state estimation, and low-level control. In this paper, we aim to answer the following question: does training the perception and control systems jointly end-toend provide better performance than training each component separately? To this end, we develop a method that can be used to learn policies that map raw image observations directly to torques at the robot's motors. The policies are represented by deep convolutional neural networks (CNNs) with 92,000 parameters, and are trained using a guided policy search method, which transforms policy search into supervised learning, with supervision provided by a simple trajectory-centric reinforcement learning method. We evaluate our method on a range of real-world manipulation tasks that require close coordination between vision and control, such as screwing a cap onto a bottle, and present simulated comparisons to a range of prior policy search methods.
translated by 谷歌翻译
增强学习(RL)是一个强大的数学框架,可让机器人通过反复试验学习复杂的技能。尽管在许多应用中取得了许多成功,但RL算法仍然需要数千个试验才能融合到高性能的政策,可以在学习时产生危险的行为,并且优化的政策(通常为神经网络建模)几乎可以在无法执行的解释时给出零的解释。任务。由于这些原因,在工业环境中采用RL并不常见。另一方面,行为树(BTS)可以提供一个策略表示,a)支持模块化和可综合的技能,b)允许轻松解释机器人动作,c)提供了有利的低维参数空间。在本文中,我们提出了一种新颖的算法,该算法可以学习模拟中BT策略的参数,然后在没有任何其他培训的情况下将其推广到物理机器人。我们利用了使用数字化工作站的物理模拟器,并使用黑盒优化器优化相关参数。我们在包括避免障碍物和富含接触的插入(孔洞)的任务中,通过7道型kuka-iiwa操纵器展示了我们方法的功效,其中我们的方法优于基准。
translated by 谷歌翻译
在现实世界中行为的自治工人的核心挑战是调整其曲目的技能来应对其嘈杂的感知和动态。为了将技能缩放到长地平线任务,机器人应该能够通过轨迹以结构化方式学习,然后在每次步骤中单独做出瞬间决策。为此,我们提出了软演员 - 评论家高斯混合模型(SAC-GMM),一种新型混合方法,通过动态系统学习机器人技巧,并通过与环境的互动来适应自己的轨迹分配空间中的学习技巧。我们的方法结合了经典的机器人技术与深度加强学习框架的演示和利用他们的互补性。我们表明,我们的方法仅在执行初步学习技能期间使用的传感器,以提取导致更快的技能细化的相关功能。模拟和现实世界环境的广泛评估展示了我们通过利用物理交互,高维感官数据和稀疏任务完成奖励来精炼机器人技能的方法的有效性。视频,代码和预先训练的模型可用于\ url {http://sac-gmm.cs.uni-freiburg.de}。
translated by 谷歌翻译
我们开发了一种新的持续元学习方法,以解决连续多任务学习中的挑战。在此设置中,代理商的目标是快速通过任何任务序列实现高奖励。先前的Meta-Creenifiltive学习算法已经表现出有希望加速收购新任务的结果。但是,他们需要在培训期间访问所有任务。除了简单地将过去的经验转移到新任务,我们的目标是设计学习学习的持续加强学习算法,使用他们以前任务的经验更快地学习新任务。我们介绍了一种新的方法,连续的元策略搜索(Comps),通过以增量方式,在序列中的每个任务上,通过序列的每个任务来消除此限制,而无需重新访问先前的任务。 Comps持续重复两个子程序:使用RL学习新任务,并使用RL的经验完全离线Meta学习,为后续任务学习做好准备。我们发现,在若干挑战性连续控制任务的旧序列上,Comps优于持续的持续学习和非政策元增强方法。
translated by 谷歌翻译
Solving real-world sequential manipulation tasks requires robots to have a repertoire of skills applicable to a wide range of circumstances. To acquire such skills using data-driven approaches, we need massive and diverse training data which is often labor-intensive and non-trivial to collect and curate. In this work, we introduce Active Task Randomization (ATR), an approach that learns visuomotor skills for sequential manipulation by automatically creating feasible and novel tasks in simulation. During training, our approach procedurally generates tasks using a graph-based task parameterization. To adaptively estimate the feasibility and novelty of sampled tasks, we develop a relational neural network that maps each task parameter into a compact embedding. We demonstrate that our approach can automatically create suitable tasks for efficiently training the skill policies to handle diverse scenarios with a variety of objects. We evaluate our method on simulated and real-world sequential manipulation tasks by composing the learned skills using a task planner. Compared to baseline methods, the skills learned using our approach consistently achieve better success rates.
translated by 谷歌翻译
机器人将机器人的无缝集成到人类环境需要机器人来学习如何使用现有的人类工具。学习工具操纵技能的目前方法主要依赖于目标机器人环境中提供的专家演示,例如,通过手动引导机器人操纵器或通过远程操作。在这项工作中,我们介绍了一种自动化方法,取代了一个专家演示,用YouTube视频来学习工具操纵策略。主要贡献是双重的。首先,我们设计一个对齐过程,使模拟环境与视频中观察到的真实世界。这是作为优化问题,找到刀具轨迹的空间对齐,以最大化环境给出的稀疏目标奖励。其次,我们描述了一种专注于工具的轨迹而不是人类的运动的模仿学习方法。为此,我们将加强学习与优化过程相结合,以基于对准环境中的工具运动来找到控制策略和机器人的放置。我们展示了仿真中的铲子,镰刀和锤子工具的建议方法,并展示了训练有素的政策对真正的弗兰卡·埃米卡熊猫机器人示范的卫生政策的有效性。
translated by 谷歌翻译
强化学习(RL)原则上可以让机器人自动适应新任务,但是当前的RL方法需要大量的试验来实现这一目标。在本文中,我们通过元学习的框架来快速适应新任务,该框架利用过去的任务学习适应了对工业插入任务的特定关注。快速适应至关重要,因为大量的机器人试验可能会损害硬件件。另外,在不同的插入应用之间的经验中,有效的适应性也可以在很大程度上彼此利用。在这种情况下,我们在应用元学习时解决了两个具体的挑战。首先,传统的元元算法需要冗长的在线元训练。 We show that this can be replaced with appropriately chosen offline data, resulting in an offline meta-RL method that only requires demonstrations and trials from each of the prior tasks, without the need to run costly meta-RL procedures online.其次,元RL方法可能无法推广到与元训练时间时看到的新任务太大的任务,这在高成功率至关重要的工业应用中构成了特定的挑战。我们通过将上下文元学习与直接在线填充结合结合来解决这一问题:如果新任务与先前数据中看到的任务相似,则可以立即适应上下文的元学习者,如果它太不同,它会逐渐通过Finetuning适应。我们表明,我们的方法能够快速适应各种不同的插入任务,成功率为100%仅使用从头开始学习任务所需的样本的一小部分。实验视频和详细信息可从https://sites.google.com/view/offline-metarl-insertion获得。
translated by 谷歌翻译
使用视频指定任务是获取新颖和一般机器人技能的强大技术。然而,推理机械和灵巧的互动可以使其挑战规模学习接触的操纵。在这项工作中,我们专注于视觉非预先展示平面操作的问题:给定平面运动中对象的视频,找到再现相同对象运动的联系人感知机器人动作。我们提出了一种新颖的架构,可微分的操纵(\我们)的学习,它通过利用可微分优化和基于有限差分的模拟来将视频解码与接触机械的前沿的视频解码神经模型结合在一起。通过广泛的模拟实验,研究了基于模型的技术与现代深度学习方法之间的相互作用。我们发现,我们的模块化和完全可差的架构比看不见的对象和运动的学习方法更好。 \ url {https://github.com/baceituno/dlm}。
translated by 谷歌翻译
强化学习(RL)算法有望为机器人系统实现自主技能获取。但是,实际上,现实世界中的机器人RL通常需要耗时的数据收集和频繁的人类干预来重置环境。此外,当部署超出知识的设置超出其学习的设置时,使用RL学到的机器人政策通常会失败。在这项工作中,我们研究了如何通过从先前看到的任务中收集的各种离线数据集的有效利用来应对这些挑战。当面对一项新任务时,我们的系统会适应以前学习的技能,以快速学习执行新任务并将环境返回到初始状态,从而有效地执行自己的环境重置。我们的经验结果表明,将先前的数据纳入机器人增强学习中可以实现自主学习,从而大大提高了学习的样本效率,并可以更好地概括。
translated by 谷歌翻译
物理模拟器在安全,不受约束的环境中方便学习加强学习政策表现出了巨大的希望。但是,由于现实差距,将获得的知识转移到现实世界可能会具有挑战性。为此,最近已经提出了几种方法来自动调整具有后验分布的实际数据,以在训练时与域随机化一起使用。这些方法已被证明在不同的设置和假设下适用于各种机器人任务。然而,现有文献缺乏对转移性能和实际数据效率的现有自适应域随机方法的详尽比较。在这项工作中,我们为离线和在线方法(Simopt,Bayrn,Droid,Dropo)提供了一个开放的基准,以阐明最适合每个设置和手头的任务。我们发现,在线方法受到下一次迭代的当前学会策略的质量受到限制,而离线方法有时可能会在使用开环命令中模拟中重播轨迹时失败。所使用的代码将在https://github.com/gabrieletiboni/adr-benchmark上发布。
translated by 谷歌翻译