Transformers have attained superior performance in natural language processing and computer vision. Their self-attention and feedforward layers are overparameterized, limiting inference speed and energy efficiency. Tensor decomposition is a promising technique to reduce parameter redundancy by leveraging tensor algebraic properties to express the parameters in a factorized form. Prior efforts used manual or heuristic factorization settings without hardware-aware customization, resulting in poor hardware efficiencies and large performance degradation. In this work, we propose a hardware-aware tensor decomposition framework, dubbed HEAT, that enables efficient exploration of the exponential space of possible decompositions and automates the choice of tensorization shape and decomposition rank with hardware-aware co-optimization. We jointly investigate tensor contraction path optimizations and a fused Einsum mapping strategy to bridge the gap between theoretical benefits and real hardware efficiency improvement. Our two-stage knowledge distillation flow resolves the trainability bottleneck and thus significantly boosts the final accuracy of factorized Transformers. Overall, we experimentally show that our hardware-aware factorized BERT variants reduce the energy-delay product by 5.7x with less than 1.1% accuracy loss and achieve a better efficiency-accuracy Pareto frontier than hand-tuned and heuristic baselines.
translated by 谷歌翻译
深度学习技术在各种任务中都表现出了出色的有效性,并且深度学习具有推进多种应用程序(包括在边缘计算中)的潜力,其中将深层模型部署在边缘设备上,以实现即时的数据处理和响应。一个关键的挑战是,虽然深层模型的应用通常会产生大量的内存和计算成本,但Edge设备通常只提供非常有限的存储和计算功能,这些功能可能会在各个设备之间差异很大。这些特征使得难以构建深度学习解决方案,以释放边缘设备的潜力,同时遵守其约束。应对这一挑战的一种有希望的方法是自动化有效的深度学习模型的设计,这些模型轻巧,仅需少量存储,并且仅产生低计算开销。该调查提供了针对边缘计算的深度学习模型设计自动化技术的全面覆盖。它提供了关键指标的概述和比较,这些指标通常用于量化模型在有效性,轻度和计算成本方面的水平。然后,该调查涵盖了深层设计自动化技术的三类最新技术:自动化神经体系结构搜索,自动化模型压缩以及联合自动化设计和压缩。最后,调查涵盖了未来研究的开放问题和方向。
translated by 谷歌翻译
低秩张量压缩已被提议作为一个有前途的方法,以减少他们的边缘设备部署神经网络的存储和计算需求。张量压缩减少的通过假设网络的权重来表示神经网络权重所需的参数的数目具有一个粗糙的高级结构。此粗结构假设已经被应用到压缩大神经网络如VGG和RESNET。计算机视觉任务然而现代国家的最先进的神经网络(即MobileNet,EfficientNet)已经通过在深度方向上可分离卷积假定粗因式分解结构,使得纯张量分解较少有吸引力的方法。我们建议低张量分解稀疏修剪,以充分利用粗粒和细粒结构的压缩相结合。我们在压缩SOTA架构的权重(MobileNetv3,EfficientNet,视觉变压器),并比较这种方法来疏剪枝,独自张量分解。
translated by 谷歌翻译
Despite achieving state-of-the-art performance on many NLP tasks, the high energy cost and long inference delay prevent Transformer-based pretrained language models (PLMs) from seeing broader adoption including for edge and mobile computing. Efficient NLP research aims to comprehensively consider computation, time and carbon emission for the entire life-cycle of NLP, including data preparation, model training and inference. In this survey, we focus on the inference stage and review the current state of model compression and acceleration for pretrained language models, including benchmarks, metrics and methodology.
translated by 谷歌翻译
AD相关建模在包括Microsoft Bing在内的在线广告系统中起着至关重要的作用。为了利用强大的变压器在这种低延迟设置中,许多现有方法脱机执行广告端计算。虽然有效,但这些方法无法提供冷启动广告,从而导致对此类广告的相关性预测不佳。这项工作旨在通过结构化修剪设计一种新的低延迟BERT,以在CPU平台上授权实时在线推断对Cold Start Ads相关性。我们的挑战是,以前的方法通常将变压器的所有层都缩减为高,均匀的稀疏性,从而产生无法以可接受的精度实现令人满意的推理速度的模型。在本文中,我们提出了SwiftPruner - 一个有效的框架,利用基于进化的搜索自动在所需的延迟约束下自动找到表现最佳的稀疏BERT模型。与进行随机突变的现有进化算法不同,我们提出了一个具有潜伏意见的多目标奖励的增强突变器,以进行更好的突变,以有效地搜索层稀疏模型的大空间。广泛的实验表明,与均匀的稀疏基线和最先进的搜索方法相比,我们的方法始终达到更高的ROC AUC和更低的潜伏度。值得注意的是,根据我们在1900年的延迟需求,SwiftPruner的AUC比Bert-Mini在大型现实世界数据集中的最先进的稀疏基线高0.86%。在线A/B测试表明,我们的模型还达到了有缺陷的冷启动广告的比例,并获得了令人满意的实时服务延迟。
translated by 谷歌翻译
深度神经网络(DNN)的记录断裂性能具有沉重的参数化,导致外部动态随机存取存储器(DRAM)进行存储。 DRAM访问的禁用能量使得在资源受限的设备上部署DNN是不普遍的,呼叫最小化重量和数据移动以提高能量效率。我们呈现SmartDeal(SD),算法框架,以进行更高成本的存储器存储/访问的较低成本计算,以便在推理和培训中积极提高存储和能量效率。 SD的核心是一种具有结构约束的新型重量分解,精心制作以释放硬件效率潜力。具体地,我们将每个重量张量分解为小基矩阵的乘积以及大的结构稀疏系数矩阵,其非零被量化为-2的功率。由此产生的稀疏和量化的DNN致力于为数据移动和重量存储而大大降低的能量,因为由于稀疏的比特 - 操作和成本良好的计算,恢复原始权重的最小开销。除了推理之外,我们采取了另一次飞跃来拥抱节能培训,引入创新技术,以解决培训时出现的独特障碍,同时保留SD结构。我们还设计专用硬件加速器,充分利用SD结构来提高实际能源效率和延迟。我们在不同的设置中对多个任务,模型和数据集进行实验。结果表明:1)应用于推理,SD可实现高达2.44倍的能效,通过实际硬件实现评估; 2)应用于培训,储存能量降低10.56倍,减少了10.56倍和4.48倍,与最先进的训练基线相比,可忽略的准确性损失。我们的源代码在线提供。
translated by 谷歌翻译
Long short-term memory (LSTM) is a type of powerful deep neural network that has been widely used in many sequence analysis and modeling applications. However, the large model size problem of LSTM networks make their practical deployment still very challenging, especially for the video recognition tasks that require high-dimensional input data. Aiming to overcome this limitation and fully unlock the potentials of LSTM models, in this paper we propose to perform algorithm and hardware co-design towards high-performance energy-efficient LSTM networks. At algorithm level, we propose to develop fully decomposed hierarchical Tucker (FDHT) structure-based LSTM, namely FDHT-LSTM, which enjoys ultra-low model complexity while still achieving high accuracy. In order to fully reap such attractive algorithmic benefit, we further develop the corresponding customized hardware architecture to support the efficient execution of the proposed FDHT-LSTM model. With the delicate design of memory access scheme, the complicated matrix transformation can be efficiently supported by the underlying hardware without any access conflict in an on-the-fly way. Our evaluation results show that both the proposed ultra-compact FDHT-LSTM models and the corresponding hardware accelerator achieve very high performance. Compared with the state-of-the-art compressed LSTM models, FDHT-LSTM enjoys both order-of-magnitude reduction in model size and significant accuracy improvement across different video recognition datasets. Meanwhile, compared with the state-of-the-art tensor decomposed model-oriented hardware TIE, our proposed FDHT-LSTM architecture achieves better performance in throughput, area efficiency and energy efficiency, respectively on LSTM-Youtube workload. For LSTM-UCF workload, our proposed design also outperforms TIE with higher throughput, higher energy efficiency and comparable area efficiency.
translated by 谷歌翻译
我们介绍了延迟感知网络加速度(LANA) - 一种在神经结构上建立的方法,用于加速神经网络的神经结构搜索技术和教师学生蒸馏。 Lana由两个阶段组成:在第一阶段,它会使用层面特征映射蒸馏来列举每层教师网络的许多替代操作。在第二阶段,它解决了使用新颖的整数线性优化(ILP)方法的有效操作的组合选择。 ILP带来独特的属性,因为它(i)在几秒钟内执行NAS,(ii)轻松满足预算约束,(iii)在图层粒度上工作,(iv)支持巨大的搜索空间$ o(10 ^ { 100})$,超越先前的搜索方法,效率和效率。在广泛的实验中,我们表明Lana产生了由目标潜伏期预算限制的有效和准确的模型,同时比其他技术明显快。我们分析了三个流行的网络架构:高效的网络,高效网络和reses,并在压缩较大模型的较小模型的延迟级别时,实现所有型号(高达3.0 \%$)的准确性改进。 Lana通过GPU和CPU实现显着的加速(高达5美元\倍),以没有准确性下降。代码将很快分享。
translated by 谷歌翻译
混合精确的深神经网络达到了硬件部署所需的能源效率和吞吐量,尤其是在资源有限的情况下,而无需牺牲准确性。但是,不容易找到保留精度的最佳每层钻头精度,尤其是在创建巨大搜索空间的大量模型,数据集和量化技术中。为了解决这一困难,最近出现了一系列文献,并且已经提出了一些实现有希望的准确性结果的框架。在本文中,我们首先总结了文献中通常使用的量化技术。然后,我们对混合精液框架进行了彻底的调查,该调查是根据其优化技术进行分类的,例如增强学习和量化技术,例如确定性舍入。此外,讨论了每个框架的优势和缺点,我们在其中呈现并列。我们最终为未来的混合精液框架提供了指南。
translated by 谷歌翻译
Model compression and model defense for deep neural networks (DNNs) have been extensively and individually studied. Considering the co-importance of model compactness and robustness in practical applications, several prior works have explored to improve the adversarial robustness of the sparse neural networks. However, the structured sparse models obtained by the exiting works suffer severe performance degradation for both benign and robust accuracy, thereby causing a challenging dilemma between robustness and structuredness of the compact DNNs. To address this problem, in this paper, we propose CSTAR, an efficient solution that can simultaneously impose the low-rankness-based Compactness, high STructuredness and high Adversarial Robustness on the target DNN models. By formulating the low-rankness and robustness requirement within the same framework and globally determining the ranks, the compressed DNNs can simultaneously achieve high compression performance and strong adversarial robustness. Evaluations for various DNN models on different datasets demonstrate the effectiveness of CSTAR. Compared with the state-of-the-art robust structured pruning methods, CSTAR shows consistently better performance. For instance, when compressing ResNet-18 on CIFAR-10, CSTAR can achieve up to 20.07% and 11.91% improvement for benign accuracy and robust accuracy, respectively. For compressing ResNet-18 with 16x compression ratio on Imagenet, CSTAR can obtain 8.58% benign accuracy gain and 4.27% robust accuracy gain compared to the existing robust structured pruning method.
translated by 谷歌翻译
While machine learning is traditionally a resource intensive task, embedded systems, autonomous navigation, and the vision of the Internet of Things fuel the interest in resource-efficient approaches. These approaches aim for a carefully chosen trade-off between performance and resource consumption in terms of computation and energy. The development of such approaches is among the major challenges in current machine learning research and key to ensure a smooth transition of machine learning technology from a scientific environment with virtually unlimited computing resources into everyday's applications. In this article, we provide an overview of the current state of the art of machine learning techniques facilitating these real-world requirements. In particular, we focus on deep neural networks (DNNs), the predominant machine learning models of the past decade. We give a comprehensive overview of the vast literature that can be mainly split into three non-mutually exclusive categories: (i) quantized neural networks, (ii) network pruning, and (iii) structural efficiency. These techniques can be applied during training or as post-processing, and they are widely used to reduce the computational demands in terms of memory footprint, inference speed, and energy efficiency. We also briefly discuss different concepts of embedded hardware for DNNs and their compatibility with machine learning techniques as well as potential for energy and latency reduction. We substantiate our discussion with experiments on well-known benchmark datasets using compression techniques (quantization, pruning) for a set of resource-constrained embedded systems, such as CPUs, GPUs and FPGAs. The obtained results highlight the difficulty of finding good trade-offs between resource efficiency and predictive performance.
translated by 谷歌翻译
近年来,大型预训练的变压器网络已显示出许多自然语言理解任务的巨大改进。但是,由于延迟和成本限制,这些模型的巨大规模给他们的微调和在线部署带来了重大挑战。支持N:M半结构化的稀疏性和低精油整数计算的新硬件是提高DNN模型效率的有前途解决方案。但是,很少有研究系统地研究预先训练的变压器网络在多大程度上受益于这些技术的组合,以及如何最好地压缩变压器的每个组件。我们提出了一个灵活的压缩框架NXMiformer,该框架使用ADMM和基于Ste的QAT执行同时进行稀疏和量化。此外,我们介绍且廉价的启发式驱动搜索算法,该算法标识了满足压缩比约束的有希望的异质压缩配置。当通过NLU基准测试的胶水套件进行评估时,我们的方法可以达到BERT模型编码器的93%压缩,同时保留了98.2%的原始模型准确性并充分利用硬件功能。异质配置通过搜索启发式发现了基线准确性的99.5%,同时仍将模型压缩为87.5%。
translated by 谷歌翻译
压缩预训练的深度神经网络的任务吸引了研究社区的广泛兴趣,因为它在使从业人员摆脱数据访问要求方面的巨大好处。在该域中,低级别的近似是一种有前途的方法,但是现有的解决方案被认为是限制的设计选择,并且未能有效地探索设计空间,从而导致严重的准确性降解和有限的压缩比达到了有限。为了解决上述局限性,这项工作提出了SVD-NAS框架,该框架将低级近似和神经体系结构搜索的域结合在一起。 SVD-NAS通用并扩展了以前作品的设计选择,通过引入低级别的建筑空间LR空间,这是一个更细粒度的低级别近似设计空间。之后,这项工作提出了基于梯度的搜索,以有效地穿越LR空间。对可能的设计选择的更精细,更彻底的探索导致了CNN模型的参数,失败和潜伏期的提高精度以及降低。结果表明,在数据限制问题设置下,SVD-NAS的成像网上的精度比最新方法高2.06-12.85pp。 SVD-NAS在https://github.com/yu-zhewen/svd-nas上开源。
translated by 谷歌翻译
我们为深神经网络提出了一种新的全球压缩框架,它自动分析每个层以识别最佳的每个层压缩比,同时实现所需的整体压缩。我们的算法通过将其通道切入多个组并通过低秩分解来分解每个组来铰接压缩每个卷积(或完全连接)层的想法。在我们的算法的核心处于从Eckart Young MiRSKY定理中推导了层面错误界限的推导。然后,我们利用这些界限将压缩问题框架作为优化问题,我们希望最小化层次的最大压缩误差并提出朝向解决方案的有效算法。我们的实验表明,我们的方法优于各种网络和数据集的现有低级压缩方法。我们认为,我们的结果为未来的全球性能大小的研究开辟了新的途径,即现代神经网络的全球性能大小。我们的代码可在https://github.com/lucaslie/torchprune获得。
translated by 谷歌翻译
我们日常生活中的深度学习是普遍存在的,包括自驾车,虚拟助理,社交网络服务,医疗服务,面部识别等,但是深度神经网络在训练和推理期间需要大量计算资源。该机器学习界主要集中在模型级优化(如深度学习模型的架构压缩),而系统社区则专注于实施级别优化。在其间,在算术界中提出了各种算术级优化技术。本文在模型,算术和实施级技术方面提供了关于资源有效的深度学习技术的调查,并确定了三种不同级别技术的资源有效的深度学习技术的研究差距。我们的调查基于我们的资源效率度量定义,阐明了较低级别技术的影响,并探讨了资源有效的深度学习研究的未来趋势。
translated by 谷歌翻译
基于注意力的神经网络在许多AI任务中都普遍存在。尽管其出色的算法性能,但注意力机制和前馈网络(FFN)的使用仍需要过多的计算和内存资源,这通常会损害其硬件性能。尽管已经引入了各种稀疏变体,但大多数方法仅着重于缓解算法级别上的二次注意力缩放,而无需明确考虑将其方法映射到真实硬件设计上的效率。此外,大多数努力仅专注于注意机制或FFN,但没有共同优化这两个部分,导致当前的大多数设计在处理不同的输入长度时缺乏可扩展性。本文从硬件角度系统地考虑了不同变体中的稀疏模式。在算法级别上,我们提出了Fabnet,这是一种适合硬件的变体,它采用统一的蝴蝶稀疏模式来近似关注机制和FFN。在硬件级别上,提出了一种新颖的适应性蝴蝶加速器,可以在运行时通过专用硬件控件配置,以使用单个统一的硬件引擎加速不同的蝴蝶层。在远程 - ARENA数据集上,FabNet达到了与香草变压器相同的精度,同时将计算量减少10到66次,参数数量为2至22次。通过共同优化算法和硬件,我们的基于FPGA的蝴蝶加速器在归一化到同一计算预算的最新加速器上达到了14.2至23.2倍的速度。与Raspberry Pi 4和Jetson Nano上优化的CPU和GPU设计相比,我们的系统在相同的功率预算下的最大273.8和15.1倍。
translated by 谷歌翻译
在深度学习中,变压器一直是必不可少的主食。但是,对于现实生活中的应用程序,由于模型的巨大参数和操作,部署有效的变压器非常具有挑战性。为了减轻这种负担,利用稀疏是加速变压器的有效方法。新出现的Ampere GPU利用2:4的稀疏模式来实现模型加速度,而在部署模型时,它几乎无法满足各种算法和硬件约束。相比之下,我们提出了一个算法 - 铁软件合作的框架,以灵活有效地加速变压器,通过使用一般的N:M稀疏模式。 (1)从算法的角度来看,我们提出了一种稀疏性遗传机制以及一种遗传的动态修剪(IDP)方法,以迅速获得一系列N:M稀疏候选变压器。进一步提出了模型压缩方案,以显着减少部署的存储需求。 (2)从硬件的角度来看,我们提出了一种灵活,有效的硬件体系结构,即STA,以在部署N:M稀疏变压器时达到显着加速。 STA不仅具有具有较高计算效率的稀疏密度和致密矩阵乘法的计算引擎,而且还具有可扩展的软模块,从而消除了中级外芯片外数据通信的延迟。实验结果表明,与其他使用IDP生成的其他方法相比,n:m稀疏变压器的准确性平均提高了6.7%。此外,与Intel I9-9900X和NVIDIA RTX 2080 TI相比,STA可以达到14.47倍和11.33倍的速度,并且比最先进的基于FPGA的加速器对变形金刚的最先进的推断速度可以快2.00-19.47倍。
translated by 谷歌翻译
诸如BERT的预先接受的语言模型在各种自然语言处理任务中显示出显着的效果。但是,这些模型通常包含数百万个参数,这可以防止它们在资源受限设备上实际部署。已知知识蒸馏,重量修剪和量化是模型压缩中的主要方向。然而,通过知识蒸馏获得的紧凑型模型即使对于相对小的压缩比也可能遭受显着的精度下降。另一方面,只有少数量化尝试专门用于自然语言处理任务。它们患有小的压缩比或较大的错误率,因为需要对超参数的手动设置,并且不支持微粒子组 - 方向量化。在本文中,我们提出了一种自动混合精密量化框架,设计用于伯特,其可以同时在亚组 - 明智的水平中进行量化和修剪。具体而言,我们所提出的方法利用可微分的神经结构搜索,搜索自动地分配每个子组中的参数的比例和精度,同时捕获冗余参数组。对BERT下游任务的广泛评估揭示了我们所提出的方法通过提供相同的模型尺寸来实现相同的性能。我们还通过将我们的解决方案与Ottherbert等正交方法相结合来展示获得极其轻量级模型的可行性。
translated by 谷歌翻译
具有密集乘法的神经网络(NNS)(例如,卷积和变形金刚)具有饥饿的能力,阻碍了它们更广泛的部署到资源受限的设备中。因此,遵循节能硬件实施的共同实践的无乘法网络,以更有效的运算符(例如,位移位和加法)参数化NN,并引起了人们的关注。但是,从实现的准确性方面,无乘法网络的表现不足。为此,这项工作倡导混合NN,包括强大但昂贵的乘法和有效而强大的运营商来嫁给两全其美的运营商,并提出了ShiftAddnas,它们可以自动寻找更准确,更有效的NN。我们的ShiftAddnas突出了两个推动者。具体而言,它集成了(1)第一个混合搜索空间,该空间同时结合了基于乘法的和无乘法的运算符,以促进精确和有效的混合NNS的开发; (2)一种新型的重量共享策略,可以在遵循异质分布的不同操作员之间有效分享(例如,用于卷积的高斯与添加操作员的拉普拉斯人),并同时导致超级降低的超网尺寸和更好的搜索网络。对各种模型,数据集和任务的广泛实验和消融研究始终如一地验证了ShiftAddnas的功效,例如,与最先进的NN相比,获得的精度高达 +4.7%,或者+4.9更好的BLEU得分,而BLEU得分更好最多可提供93%或69%的能源和延迟节省。可以在https://github.com/rice-eic/shiftaddnas上获得代码和预估计的模型。
translated by 谷歌翻译
近年来,行业和学术界的深度学习(DL)迅速发展。但是,找到DL模型的最佳超参数通常需要高计算成本和人类专业知识。为了减轻上述问题,进化计算(EC)作为一种强大的启发式搜索方法显示出在DL模型的自动设计中,所谓的进化深度学习(EDL)具有重要优势。本文旨在从自动化机器学习(AUTOML)的角度分析EDL。具体来说,我们首先从机器学习和EC阐明EDL,并将EDL视为优化问题。根据DL管道的说法,我们系统地介绍了EDL方法,从功能工程,模型生成到具有新的分类法的模型部署(即,什么以及如何发展/优化),专注于解决方案表示和搜索范式的讨论通过EC处理优化问题。最后,提出了关键的应用程序,开放问题以及可能有希望的未来研究线。这项调查回顾了EDL的最新发展,并为EDL的开发提供了有见地的指南。
translated by 谷歌翻译