近年来,游戏AI研究取得了巨大的突破,尤其是在增强学习(RL)中。尽管他们成功了,但基础游戏通常是通过自己的预设环境和游戏机制实现的,因此使研究人员难以创建不同的游戏环境。但是,测试RL代理对各种游戏环境的测试对于最近努力研究RL的概括并避免可能发生过度拟合的问题至关重要。在本文中,我们将Gridd呈现为游戏AI研究的新平台,该平台提供了高度可配置的游戏,不同的观察者类型和有效的C ++核心引擎的独特组合。此外,我们提出了一系列基线实验,以研究RL剂的不同观察构构和泛化能力的影响。
translated by 谷歌翻译
加强学习(RL)研究的进展通常是由新的,具有挑战性的环境的设计驱动的,这是一项昂贵的事业,需要技能与典型的机器学习研究人员的正交性。环境发展的复杂性仅随着程序性产生(PCG)的兴起而增加,作为产生能够测试RL剂稳健性和泛化的各种环境的流行范式。此外,现有环境通常需要复杂的构建过程,从而使重现结果变得困难。为了解决这些问题,我们介绍了基于网状引擎的基于网络的集成开发环境(IDE)Griddlyjs。 Griddlyjs允许研究人员使用方便的图形接口在视觉上设计和调试任意,复杂的PCG网格世界环境,并可视化,评估和记录训练有素的代理模型的性能。通过将RL工作流连接到由现代Web标准启用的高级功能,Griddlyjs允许发布交互式代理 - 环境演示,将实验结果直接重现为Web。为了证明Griddlyjs的多功能性,我们使用它来快速开发一个复杂的组成拼图解决环境,以及任意人为设计的环境配置及其用于自动课程学习和离线RL的解决方案。 Griddlyjs IDE是开源的,可以在\ url {https://griddly.ai}上免费获得。
translated by 谷歌翻译
深度强化学习(RL)的进展是通过用于培训代理商的具有挑战性的基准的可用性来驱动。但是,社区广泛采用的基准未明确设计用于评估RL方法的特定功能。虽然存在用于评估RL的特定打开问题的环境(例如探索,转移学习,无监督环境设计,甚至语言辅助RL),但一旦研究超出证明,通常难以将这些更富有,更复杂的环境 - 概念结果。我们展示了一个强大的沙箱框架,用于易于设计新颖的RL环境。 Minihack是一个停止商店,用于RL实验,环境包括从小房间到复杂的,程序生成的世界。通过利用来自Nethack的全套实体和环境动态,MiniHack是最富有的基网上的视频游戏之一,允许设计快速方便的定制RL测试台。使用这种沙箱框架,可以轻松设计新颖的环境,可以使用人类可读的描述语言或简单的Python接口来设计。除了各种RL任务和基线外,Minihack还可以包装现有的RL基准,并提供无缝添加额外复杂性的方法。
translated by 谷歌翻译
我们介绍了Godot强化学习(RL)代理,这是一个用于在戈戈斯游戏引擎中发展环境和代理的开源接口。Goot RL代理界面允许在具有各种策略和偏离策略的深度RL算法的具有挑战性的2D和3D环境中设计,创建和学习代理行为。我们提供标准的健身房界面,带有包装纸,用于学习Ray Rllib和稳定的基线RL框架。这允许用户访问最近20个艺术策略,禁止策略和多代理RL算法的状态。该框架是一个多功能工具,允许研究人员和游戏设计人员能够使用离散,连续和混合动作空间创建环境。界面相对表现,在高端膝上型计算机上每秒12k交互,当在4个CPU内核上被平移。概述视频可在此处提供:https://youtu.be/g1mlzsfqij4
translated by 谷歌翻译
In this article we introduce the Arcade Learning Environment (ALE): both a challenge problem and a platform and methodology for evaluating the development of general, domain-independent AI technology. ALE provides an interface to hundreds of Atari 2600 game environments, each one different, interesting, and designed to be a challenge for human players. ALE presents significant research challenges for reinforcement learning, model learning, model-based planning, imitation learning, transfer learning, and intrinsic motivation. Most importantly, it provides a rigorous testbed for evaluating and comparing approaches to these problems. We illustrate the promise of ALE by developing and benchmarking domain-independent agents designed using well-established AI techniques for both reinforcement learning and planning. In doing so, we also propose an evaluation methodology made possible by ALE, reporting empirical results on over 55 different games. All of the software, including the benchmark agents, is publicly available.
translated by 谷歌翻译
多代理深度增强学习(Marl)缺乏缺乏共同使用的评估任务和标准,使方法之间的比较困难。在这项工作中,我们提供了一个系统评估,并比较了三种不同类别的Marl算法(独立学习,集中式多代理政策梯度,价值分解)在各种协作多智能经纪人学习任务中。我们的实验是在不同学习任务中作为算法的预期性能的参考,我们为不同学习方法的有效性提供了见解。我们开源EPYMARL,它将Pymarl CodeBase扩展到包括其他算法,并允许灵活地配置算法实现细节,例如参数共享。最后,我们开源两种环境,用于多智能经纪研究,重点关注稀疏奖励下的协调。
translated by 谷歌翻译
We introduce Procgen Benchmark, a suite of 16 procedurally generated game-like environments designed to benchmark both sample efficiency and generalization in reinforcement learning. We believe that the community will benefit from increased access to high quality training environments, and we provide detailed experimental protocols for using this benchmark. We empirically demonstrate that diverse environment distributions are essential to adequately train and evaluate RL agents, thereby motivating the extensive use of procedural content generation. We then use this benchmark to investigate the effects of scaling model size, finding that larger models significantly improve both sample efficiency and generalization.
translated by 谷歌翻译
在本文VisualEnv中,介绍了一种用于强化学习的可视环境的新工具。它是开源建模和渲染软件,搅拌机和用于生成仿真环境模型的Python模块的产品的产品。VisualEnv允许用户创建具有照片拟真渲染功能的自定义环境,并与Python完全集成。框架描述并测试了一系列示例问题,这些问题展示了培训强化学习代理的功能。
translated by 谷歌翻译
本文介绍了Kings Arena的荣誉,Kings Arena是基于国王荣誉的强化学习(RL)环境,这是世界上最受欢迎的游戏之一。与以前大多数工作中研究的其他环境相比,我们的人对竞争性强化学习提出了新的概括挑战。与对手竞争的一个代理商是一个多代理的问题;它需要概括能力,因为它具有控制和不同的对手竞争的不同目标。我们描述了国王域名荣誉的观察,动作和奖励规范,并提供了一个基于python的开源界面,以与游戏引擎进行通信。我们为纪念国王竞技场的二十个目标英雄提供了各种任务,并为具有可行的计算资源的基于RL的方法提供了初始基线结果。最后,我们展示了国王竞技场的荣誉和对挑战的可能补救措施所面临的概括挑战。所有软件(包括环境级)均可在https://github.com/tencent-ailab/hok_env上公开获得。该文档可在https://aiarena.tencent.com/hok/doc/上获得。
translated by 谷歌翻译
Keke AI竞赛介绍了游戏Baba的人造代理竞赛是您 - 像索托班一样的益智游戏,玩家可以创建影响游戏机制的规则。更改规则可能会导致可能是解决方案空间的一部分的其余级别的暂时或永久效应。这些动态规则的性质和游戏的确定性方面为AI构成了一个挑战,即适应各种机械组合以解决一个水平。本文介绍了用于对提交代理进行排名的框架和评估指标,以及样本搜索剂的基线结果。
translated by 谷歌翻译
本文介绍了一种扮演流行的第一人称射击(FPS)视频游戏的AI代理商的AI代理商;来自像素输入的全球攻势(CSGO)。代理人,一个深度神经网络,符合Deathmatch游戏模式内置AI内置AI的媒体难度的性能,同时采用人类的戏剧风格。与在游戏中的许多事先工作不同,CSGO没有API,因此算法必须培训并实时运行。这限制了可以生成的策略数据的数量,妨碍许多增强学习算法。我们的解决方案使用行为克隆 - 在从在线服务器上的人类播放(400万帧,大小与Imagenet相当的400万帧)上刮出的大型嘈杂数据集的行为克隆训练,以及一个较小的高质量专家演示数据集。这种比例是比FPS游戏中的模仿学习的先前工作的数量级。
translated by 谷歌翻译
蒙特卡洛树搜索(MCT)是设计游戏机器人或解决顺序决策问题的强大方法。该方法依赖于平衡探索和开发的智能树搜索。MCT以模拟的形式进行随机抽样,并存储动作的统计数据,以在每个随后的迭代中做出更有教育的选择。然而,该方法已成为组合游戏的最新技术,但是,在更复杂的游戏(例如那些具有较高的分支因素或实时系列的游戏)以及各种实用领域(例如,运输,日程安排或安全性)有效的MCT应用程序通常需要其与问题有关的修改或与其他技术集成。这种特定领域的修改和混合方法是本调查的主要重点。最后一项主要的MCT调查已于2012年发布。自发布以来出现的贡献特别感兴趣。
translated by 谷歌翻译
基于文本的游戏提供了一个具有挑战性的测试床,以评估语言理解,多步骤解决和常识性推理的虚拟代理。但是,速度是当前基于文本的游戏的主要局限性,主要是由于使用旧工具,以每秒300个步骤的限制。在这项工作中,我们介绍了TextWorldExpress,这是三个常见文本游戏基准的高性能实现,将模拟吞吐量增加了大约三个数量级,在常见桌面硬件上每秒超过一百万步。这大大降低了实验运行时,大约有一天可以进行十亿步尺度的实验。
translated by 谷歌翻译
该项目提出了一种自动生成视频游戏动态描述的动作模型的方法,以及与计划代理的集成,以执行和监控计划。规划者使用这些动作模型来获得许多不同视频游戏中的代理的审议行为,并与反应模块组合,解决确定性和无确定级别。实验结果验证了该方法的方法,并证明了知识工程师的努力在这种复杂域的定义中可以大大减少。此外,域名的基准已经制定,这可能对国际规划社会评估国际规划竞赛中的规划者感兴趣。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
In fighting games, individual players of the same skill level often exhibit distinct strategies from one another through their gameplay. Despite this, the majority of AI agents for fighting games have only a single strategy for each "level" of difficulty. To make AI opponents more human-like, we'd ideally like to see multiple different strategies at each level of difficulty, a concept we refer to as "multidimensional" difficulty. In this paper, we introduce a diversity-based deep reinforcement learning approach for generating a set of agents of similar difficulty that utilize diverse strategies. We find this approach outperforms a baseline trained with specialized, human-authored reward functions in both diversity and performance.
translated by 谷歌翻译
强化学习算法在竞争挑战板和视频游戏时表现良好。越来越多的研究工作侧重于提高加强学习算法的泛化能力。普通视频游戏AI学习竞赛旨在设计能够学习在培训期间出现不同游戏水平的代理商。本文总结了五年的一般视频游戏AI学习竞争。在每个版本,设计了三场新游戏。对于每场比赛,通过扰动或组合两个训练水平来产生三个测试水平。然后,我们提出了一种新颖的加强学习框架,对一般视频游戏的双程观察,在假设中,它更有可能在不同级别而不是全局信息中观察到类似的本地信息。因此,我们所提出的框架而不是直接输入基于目前游戏屏幕的单个原始像素的屏幕截图,而是将游戏屏幕的编码,转换的全局和本地观测视为两个同时输入,旨在学习播放新级别的本地信息。我们提出的框架是用三种最先进的加强学习算法实施,并在2020年普通视频游戏AI学习竞赛的游戏集上进行了测试。消融研究表明,使用编码,转换的全局和本地观察的出色性能。总体上最好的代理商进一步用作2021次竞赛版的基线。
translated by 谷歌翻译
With the breakthrough of AlphaGo, deep reinforcement learning becomes a recognized technique for solving sequential decision-making problems. Despite its reputation, data inefficiency caused by its trial and error learning mechanism makes deep reinforcement learning hard to be practical in a wide range of areas. Plenty of methods have been developed for sample efficient deep reinforcement learning, such as environment modeling, experience transfer, and distributed modifications, amongst which, distributed deep reinforcement learning has shown its potential in various applications, such as human-computer gaming, and intelligent transportation. In this paper, we conclude the state of this exciting field, by comparing the classical distributed deep reinforcement learning methods, and studying important components to achieve efficient distributed learning, covering single player single agent distributed deep reinforcement learning to the most complex multiple players multiple agents distributed deep reinforcement learning. Furthermore, we review recently released toolboxes that help to realize distributed deep reinforcement learning without many modifications of their non-distributed versions. By analyzing their strengths and weaknesses, a multi-player multi-agent distributed deep reinforcement learning toolbox is developed and released, which is further validated on Wargame, a complex environment, showing usability of the proposed toolbox for multiple players and multiple agents distributed deep reinforcement learning under complex games. Finally, we try to point out challenges and future trends, hoping this brief review can provide a guide or a spark for researchers who are interested in distributed deep reinforcement learning.
translated by 谷歌翻译
独立的强化学习算法没有理论保证,用于在多代理设置中找到最佳策略。然而,在实践中,先前的作品报告了在某些域中的独立算法和其他方面的良好性能。此外,文献中缺乏对独立算法的优势和弱点的全面研究。在本文中,我们对四个Pettingzoo环境进行了独立算法的性能的实证比较,这些环境跨越了三种主要类别的多助理环境,即合作,竞争和混合。我们表明,在完全可观察的环境中,独立的算法可以在协作和竞争环境中与多代理算法进行同步。对于混合环境,我们表明通过独立算法培训的代理商学会单独执行,但未能学会与盟友合作并与敌人竞争。我们还表明,添加重复性提高了合作部分可观察环境中独立算法的学习。
translated by 谷歌翻译
Starcraft II(SC2)对强化学习(RL)提出了巨大的挑战,其中主要困难包括巨大的状态空间,不同的动作空间和长期的视野。在这项工作中,我们研究了《星际争霸II》全长游戏的一系列RL技术。我们研究了涉及提取的宏观活动和神经网络的层次结构的层次RL方法。我们研究了课程转移培训程序,并在具有4个GPU和48个CPU线的单台计算机上训练代理。在64x64地图并使用限制性单元上,我们对内置AI的获胜率达到99%。通过课程转移学习算法和战斗模型的混合物,我们在最困难的非作战水平内置AI(7级)中获得了93%的胜利率。在本文的扩展版本中,我们改进了架构,以针对作弊水平训练代理商,并在8级,9级和10级AIS上达到胜利率,为96%,97%和94 %, 分别。我们的代码在https://github.com/liuruoze/hiernet-sc2上。为了为我们的工作以及研究和开源社区提供基线,我们将其复制了一个缩放版本的Mini-Alphastar(MAS)。 MAS的最新版本为1.07,可以在具有564个动作的原始动作空间上进行培训。它旨在通过使超参数可调节来在单个普通机器上进行训练。然后,我们使用相同的资源将我们的工作与MAS进行比较,并表明我们的方法更有效。迷你α的代码在https://github.com/liuruoze/mini-alphastar上。我们希望我们的研究能够阐明对SC2和其他大型游戏有效增强学习的未来研究。
translated by 谷歌翻译