在过去几年中开发的自我监督的学习和预训练策略尤其是卷积神经网络(CNNS)。重点应用这些方法也可以为图形神经网络(GNNS)没有统治。在此纸纸中,我们使用了一种基于图的自我监督信息,具有不同的丢失功能(条 - 低双胞胎[Zbontaret Al。,2021],HSIC [Tsaiet Al。,2021],Vicrog [Bardeset al。,2021])有前途的结果,当Pnnspreighly应用时。我们还提出了一种混合损失,将VICREG ANDHSIC的优势结合起来,称为vicreghsic。当施加到7种不同的数据集时,这些上述方法的穿孔伴有了诸如蛋白质蛋白质,蛋白质,IMDB-二进制等。前衰竭表明,我们形成的杂交损失函数优于4例中的4例中的剩余损失函数。此外,还探讨了不同批量,投影仪尺寸和数据增强的影响。
translated by 谷歌翻译
Generalizable, transferrable, and robust representation learning on graph-structured data remains a challenge for current graph neural networks (GNNs). Unlike what has been developed for convolutional neural networks (CNNs) for image data, self-supervised learning and pre-training are less explored for GNNs. In this paper, we propose a graph contrastive learning (GraphCL) framework for learning unsupervised representations of graph data. We first design four types of graph augmentations to incorporate various priors. We then systematically study the impact of various combinations of graph augmentations on multiple datasets, in four different settings: semi-supervised, unsupervised, and transfer learning as well as adversarial attacks. The results show that, even without tuning augmentation extents nor using sophisticated GNN architectures, our GraphCL framework can produce graph representations of similar or better generalizability, transferrability, and robustness compared to state-of-the-art methods. We also investigate the impact of parameterized graph augmentation extents and patterns, and observe further performance gains in preliminary experiments. Our codes are available at: https://github.com/Shen-Lab/GraphCL.
translated by 谷歌翻译
图神经网络的自我监督学习(SSL)正在成为利用未标记数据的有前途的方式。当前,大多数方法基于从图像域改编的对比度学习,该学习需要视图生成和足够数量的负样本。相比之下,现有的预测模型不需要负面抽样,但缺乏关于借口训练任务设计的理论指导。在这项工作中,我们提出了lagraph,这是基于潜在图预测的理论基础的预测SSL框架。 lagraph的学习目标被推导为自我监督的上限,以预测未观察到的潜在图。除了改进的性能外,Lagraph还为包括基于不变性目标的预测模型的最新成功提供了解释。我们提供了比较毛发与不同领域中相关方法的理论分析。我们的实验结果表明,劳拉在性能方面的优势和鲁棒性对于训练样本量减少了图形级别和节点级任务。
translated by 谷歌翻译
对比学习已被广​​泛应用于图形表示学习,其中观测发生器在产生有效的对比样本方面发挥着重要作用。大多数现有的对比学习方法采用预定义的视图生成方法,例如节点滴或边缘扰动,这通常不能适应输入数据或保持原始语义结构。为了解决这个问题,我们提出了一份名为自动化图形对比学习(AutoGCL)的小说框架。具体而言,AutoGCL采用一组由自动增强策略协调的一组学习图形视图生成器,其中每个图形视图生成器都会学习输入调节的图形的概率分布。虽然AutoGCL中的图形视图发生器在生成每个对比样本中保留原始图的最代表性结构,但自动增强学会在整个对比学习程序中介绍适当的增强差异的政策。此外,AutoGCL采用联合培训策略,以培训学习的视图发生器,图形编码器和分类器以端到端的方式,导致拓扑异质性,在产生对比样本时的语义相似性。关于半监督学习,无监督学习和转移学习的广泛实验展示了我们在图形对比学习中的最先进的自动支持者框架的优越性。此外,可视化结果进一步证实,与现有的视图生成方法相比,可学习的视图发生器可以提供更紧凑和语义有意义的对比样本。
translated by 谷歌翻译
图形对比学习(GCL)已成为学习图形无监督表示的有效工具。关键思想是通过数据扩展最大化每个图的两个增强视图之间的一致性。现有的GCL模型主要集中在给定情况下的所有图表上应用\ textit {相同的增强策略}。但是,实际图通常不是单态,而是各种本质的抽象。即使在相同的情况下(例如,大分子和在线社区),不同的图形可能需要各种增强来执行有效的GCL。因此,盲目地增强所有图表而不考虑其个人特征可能会破坏GCL艺术的表现。 {a} u Mentigation(GPA),通过允许每个图选择自己的合适的增强操作来推进常规GCL。本质上,GPA根据其拓扑属性和节点属性通过可学习的增强选择器为每个图定制了量身定制的增强策略,该策略是插件模块,可以通过端到端的下游GCL型号有效地训练。来自不同类型和域的11个基准图的广泛实验证明了GPA与最先进的竞争对手的优势。此外,通过可视化不同类型的数据集中学习的增强分布,我们表明GPA可以有效地识别最合适的数据集每个图的增强基于其特征。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
Existing graph contrastive learning methods rely on augmentation techniques based on random perturbations (e.g., randomly adding or dropping edges and nodes). Nevertheless, altering certain edges or nodes can unexpectedly change the graph characteristics, and choosing the optimal perturbing ratio for each dataset requires onerous manual tuning. In this paper, we introduce Implicit Graph Contrastive Learning (iGCL), which utilizes augmentations in the latent space learned from a Variational Graph Auto-Encoder by reconstructing graph topological structure. Importantly, instead of explicitly sampling augmentations from latent distributions, we further propose an upper bound for the expected contrastive loss to improve the efficiency of our learning algorithm. Thus, graph semantics can be preserved within the augmentations in an intelligent way without arbitrary manual design or prior human knowledge. Experimental results on both graph-level and node-level tasks show that the proposed method achieves state-of-the-art performance compared to other benchmarks, where ablation studies in the end demonstrate the effectiveness of modules in iGCL.
translated by 谷歌翻译
对比度学习是图表学习中的有效无监督方法,对比度学习的关键组成部分在于构建正和负样本。以前的方法通常利用图中节点的接近度作为原理。最近,基于数据增强的对比度学习方法已进步以显示视觉域中的强大力量,一些作品将此方法从图像扩展到图形。但是,与图像上的数据扩展不同,图上的数据扩展远不那么直观,而且很难提供高质量的对比样品,这为改进留出了很大的空间。在这项工作中,通过引入一个对抗性图视图以进行数据增强,我们提出了一种简单但有效的方法,对抗图对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。我们开发了一种称为稳定训练的信息正则化的新技术,并使用子图抽样以进行可伸缩。我们通过将每个图形实例视为超级节点,从节点级对比度学习到图级。 Ariel始终优于在现实世界数据集上的节点级别和图形级分类任务的当前图对比度学习方法。我们进一步证明,面对对抗性攻击,Ariel更加强大。
translated by 谷歌翻译
Graph representation learning has emerged as a powerful technique for addressing real-world problems. Various downstream graph learning tasks have benefited from its recent developments, such as node classification, similarity search, and graph classification. However, prior arts on graph representation learning focus on domain specific problems and train a dedicated model for each graph dataset, which is usually non-transferable to out-of-domain data. Inspired by the recent advances in pre-training from natural language processing and computer vision, we design Graph Contrastive Coding (GCC) 1 -a self-supervised graph neural network pre-training framework-to capture the universal network topological properties across multiple networks. We design GCC's pre-training task as subgraph instance discrimination in and across networks and leverage contrastive learning to empower graph neural networks to learn the intrinsic and transferable structural representations. We conduct extensive experiments on three graph learning tasks and ten graph datasets. The results show that GCC pre-trained on a collection of diverse datasets can achieve competitive or better performance to its task-specific and trained-from-scratch counterparts. This suggests that the pre-training and fine-tuning paradigm presents great potential for graph representation learning.
translated by 谷歌翻译
尽管有关超图的机器学习吸引了很大的关注,但大多数作品都集中在(半)监督的学习上,这可能会导致繁重的标签成本和不良的概括。最近,对比学习已成为一种成功的无监督表示学习方法。尽管其他领域中对比度学习的发展繁荣,但对超图的对比学习仍然很少探索。在本文中,我们提出了Tricon(三个方向对比度学习),这是对超图的对比度学习的一般框架。它的主要思想是三个方向对比度,具体来说,它旨在在两个增强视图中最大化同一节点之间的协议(a),(b)在同一节点之间以及(c)之间,每个组之间的成员及其成员之间的协议(b) 。加上简单但令人惊讶的有效数据增强和负抽样方案,这三种形式的对比使Tricon能够在节点嵌入中捕获显微镜和介观结构信息。我们使用13种基线方法,5个数据集和两个任务进行了广泛的实验,这证明了Tricon的有效性,最明显的是,Tricon始终优于无监督的竞争对手,而且(半)受监督的竞争对手,大多数是由大量的节点分类的大量差额。
translated by 谷歌翻译
Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph, 1) the similarity between the original graph and the generated augmented graph gradually decreases; 2) the discrimination between all nodes within each augmented view gradually increases. In this paper, we argue that both such prior information can be incorporated (differently) into the contrastive learning paradigm following our general ranking framework. In particular, we first interpret CL as a special case of learning to rank (L2R), which inspires us to leverage the ranking order among positive augmented views. Meanwhile, we introduce a self-ranking paradigm to ensure that the discriminative information among different nodes can be maintained and also be less altered to the perturbations of different degrees. Experiment results on various benchmark datasets verify the effectiveness of our algorithm compared with the supervised and unsupervised models.
translated by 谷歌翻译
近年来,自我监督学习(SSL)已广泛探索。特别是,生成的SSL在自然语言处理和其他AI领域(例如BERT和GPT的广泛采用)中获得了新的成功。尽管如此,对比度学习 - 严重依赖结构数据的增强和复杂的培训策略,这是图SSL的主要方法,而迄今为止,生成SSL在图形上的进度(尤其是GAES)尚未达到潜在的潜力。正如其他领域所承诺的。在本文中,我们确定并检查对GAE的发展产生负面影响的问题,包括其重建目标,训练鲁棒性和错误指标。我们提出了一个蒙版的图形自动编码器Graphmae,该图可以减轻这些问题,以预处理生成性自我监督图。我们建议没有重建图形结构,而是提议通过掩盖策略和缩放余弦误差将重点放在特征重建上,从而使GraphMae的强大训练受益。我们在21个公共数据集上进行了大量实验,以实现三个不同的图形学习任务。结果表明,Graphmae-A简单的图形自动编码器具有仔细的设计-CAN始终在对比度和生成性最新基准相比,始终产生优于性的表现。这项研究提供了对图自动编码器的理解,并证明了在图上的生成自我监督预训练的潜力。
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
图级表示在各种现实世界中至关重要,例如预测分子的特性。但是实际上,精确的图表注释通常非常昂贵且耗时。为了解决这个问题,图形对比学习构造实例歧视任务,将正面对(同一图的增强对)汇总在一起,并将负面对(不同图的增强对)推开,以进行无监督的表示。但是,由于为了查询,其负面因素是从所有图中均匀抽样的,因此现有方法遭受关键采样偏置问题的损失,即,否定物可能与查询具有相同的语义结构,从而导致性能降解。为了减轻这种采样偏见问题,在本文中,我们提出了一种典型的图形对比度学习(PGCL)方法。具体而言,PGCL通过将语义相似的图形群群归为同一组的群集数据的基础语义结构,并同时鼓励聚类的一致性,以实现同一图的不同增强。然后给出查询,它通过从与查询群集不同的群集中绘制图形进行负采样,从而确保查询及其阴性样本之间的语义差异。此外,对于查询,PGCL根据其原型(集群质心)和查询原型之间的距离进一步重新重新重新重新重新享受其负样本,从而使那些具有中等原型距离的负面因素具有相对较大的重量。事实证明,这种重新加权策略比统一抽样更有效。各种图基准的实验结果证明了我们的PGCL比最新方法的优势。代码可在https://github.com/ha-lins/pgcl上公开获取。
translated by 谷歌翻译
灵感来自最近应用于图像上的自我监督方法的成功,图形结构数据的自我监督学习已经看到迅速增长,特别是基于增强的对比方法。但是,我们认为没有精心设计的增强技术,图形上的增强可能是任意行为的,因为图形的底层语义可以急剧地改变。因此,现有增强的方法的性能高度依赖于增强方案的选择,即与增强相关联的超级参数。在本文中,我们提出了一种名为AFGRL的图表的一种新的增强自我监督学习框架。具体地,我们通过发现与图形共享本地结构信息和全局语义的节点来生成图表的替代视图。各种数据集的各种节点级任务,即节点分类,群集和相似性搜索的广泛实验证明了AFGRL的优越性。 AFGRL的源代码可在https://github.com/namkyeong/afgrl中获得。
translated by 谷歌翻译
Contrastive learning methods based on InfoNCE loss are popular in node representation learning tasks on graph-structured data. However, its reliance on data augmentation and its quadratic computational complexity might lead to inconsistency and inefficiency problems. To mitigate these limitations, in this paper, we introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL in short). Local-GCL consists of two key designs: 1) We fabricate the positive examples for each node directly using its first-order neighbors, which frees our method from the reliance on carefully-designed graph augmentations; 2) To improve the efficiency of contrastive learning on graphs, we devise a kernelized contrastive loss, which could be approximately computed in linear time and space complexity with respect to the graph size. We provide theoretical analysis to justify the effectiveness and rationality of the proposed methods. Experiments on various datasets with different scales and properties demonstrate that in spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
translated by 谷歌翻译
领先的图对比度学习(GCL)方法在两个时尚中执行图形增强:(1)随机损坏锚图,这可能会导致语义信息的丢失,或(2)使用域知识维护显着特征,这破坏了对概括的概括其他域。从不变性看GCL时,我们认为高性能的增强应保留有关实例歧视的锚图的显着语义。为此,我们将GCL与不变的理由发现联系起来,并提出了一个新的框架,即理由吸引图形对比度学习(RGCL)。具体而言,没有监督信号,RGCL使用基本原理生成器来揭示有关图形歧视的显着特征作为理由,然后为对比度学习创建理由吸引的视图。这种理由意识到的预训练方案赋予了骨干模型具有强大的表示能力,从而进一步促进了下游任务的微调。在MNIST-SUPERPIXEL和MUTAG数据集上,对发现的理由的视觉检查展示了基本原理生成器成功捕获了显着特征(即区分图中的语义节点)。在生化分子和社交网络基准数据集上,RGCL的最新性能证明了理由意识到对比度学习的有效性。我们的代码可在https://github.com/lsh0520/rgcl上找到。
translated by 谷歌翻译
对比度学习是图表学习中有效的无监督方法。最近,基于数据增强的对比度学习方法已从图像扩展到图形。但是,大多数先前的作品都直接根据为图像设计的模型进行了调整。与图像上的数据增强不同,图表上的数据扩展远不那么直观,而且很难提供高质量的对比样本,这是对比度学习模型的性能的关键。这为改进现有图形对比学习框架留出了很多空间。在这项工作中,通过引入对抗图视图和信息正常化程序,我们提出了一种简单但有效的方法,即对逆向对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。它始终优于各种现实世界数据集的节点分类任务中当前的图形对比度学习方法,并进一步提高了图对比度学习的鲁棒性。
translated by 谷歌翻译
自我监督的学习提供了一个有希望的途径,消除了在图形上的代表学习中的昂贵标签信息的需求。然而,为了实现最先进的性能,方法通常需要大量的负例,并依赖于复杂的增强。这可能是昂贵的,特别是对于大图。为了解决这些挑战,我们介绍了引导的图形潜伏(BGRL) - 通过预测输入的替代增强来学习图表表示学习方法。 BGRL仅使用简单的增强,并减轻了对否定例子对比的需求,因此通过设计可扩展。 BGRL胜过或匹配现有的几种建立的基准,同时降低了内存成本的2-10倍。此外,我们表明,BGR1可以缩放到半监督方案中的数亿个节点的极大的图表 - 实现最先进的性能并改善监督基线,其中表示仅通过标签信息而塑造。特别是,我们的解决方案以BGRL为中心,将kdd杯2021的开放图基准的大规模挑战组成了一个获奖条目,在比所有先前可用的基准更大的级别的图形订单上,从而展示了我们方法的可扩展性和有效性。
translated by 谷歌翻译
在异质图上的自我监督学习(尤其是对比度学习)方法可以有效地摆脱对监督数据的依赖。同时,大多数现有的表示学习方法将异质图嵌入到欧几里得或双曲线的单个几何空间中。这种单个几何视图通常不足以观察由于其丰富的语义和复杂结构而观察到异质图的完整图片。在这些观察结果下,本文提出了一种新型的自我监督学习方法,称为几何对比度学习(GCL),以更好地表示监督数据是不可用时的异质图。 GCL同时观察了从欧几里得和双曲线观点的异质图,旨在强烈合并建模丰富的语义和复杂结构的能力,这有望为下游任务带来更多好处。 GCL通过在局部局部和局部全球语义水平上对比表示两种几何视图之间的相互信息。在四个基准数据集上进行的广泛实验表明,在三个任务上,所提出的方法在包括节点分类,节点群集和相似性搜索在内的三个任务上都超过了强基础,包括无监督的方法和监督方法。
translated by 谷歌翻译