图神经网络的自我监督学习(SSL)正在成为利用未标记数据的有前途的方式。当前,大多数方法基于从图像域改编的对比度学习,该学习需要视图生成和足够数量的负样本。相比之下,现有的预测模型不需要负面抽样,但缺乏关于借口训练任务设计的理论指导。在这项工作中,我们提出了lagraph,这是基于潜在图预测的理论基础的预测SSL框架。 lagraph的学习目标被推导为自我监督的上限,以预测未观察到的潜在图。除了改进的性能外,Lagraph还为包括基于不变性目标的预测模型的最新成功提供了解释。我们提供了比较毛发与不同领域中相关方法的理论分析。我们的实验结果表明,劳拉在性能方面的优势和鲁棒性对于训练样本量减少了图形级别和节点级任务。
translated by 谷歌翻译
关于图表的深度学习最近吸引了重要的兴趣。然而,大多数作品都侧重于(半)监督学习,导致缺点包括重标签依赖,普遍性差和弱势稳健性。为了解决这些问题,通过良好设计的借口任务在不依赖于手动标签的情况下提取信息知识的自我监督学习(SSL)已成为图形数据的有希望和趋势的学习范例。与计算机视觉和自然语言处理等其他域的SSL不同,图表上的SSL具有独家背景,设计理念和分类。在图表的伞下自我监督学习,我们对采用图表数据采用SSL技术的现有方法及时及全面的审查。我们构建一个统一的框架,数学上正式地规范图表SSL的范例。根据借口任务的目标,我们将这些方法分为四类:基于生成的,基于辅助性的,基于对比的和混合方法。我们进一步描述了曲线图SSL在各种研究领域的应用,并总结了绘图SSL的常用数据集,评估基准,性能比较和开源代码。最后,我们讨论了该研究领域的剩余挑战和潜在的未来方向。
translated by 谷歌翻译
近年来,自我监督学习(SSL)已广泛探索。特别是,生成的SSL在自然语言处理和其他AI领域(例如BERT和GPT的广泛采用)中获得了新的成功。尽管如此,对比度学习 - 严重依赖结构数据的增强和复杂的培训策略,这是图SSL的主要方法,而迄今为止,生成SSL在图形上的进度(尤其是GAES)尚未达到潜在的潜力。正如其他领域所承诺的。在本文中,我们确定并检查对GAE的发展产生负面影响的问题,包括其重建目标,训练鲁棒性和错误指标。我们提出了一个蒙版的图形自动编码器Graphmae,该图可以减轻这些问题,以预处理生成性自我监督图。我们建议没有重建图形结构,而是提议通过掩盖策略和缩放余弦误差将重点放在特征重建上,从而使GraphMae的强大训练受益。我们在21个公共数据集上进行了大量实验,以实现三个不同的图形学习任务。结果表明,Graphmae-A简单的图形自动编码器具有仔细的设计-CAN始终在对比度和生成性最新基准相比,始终产生优于性的表现。这项研究提供了对图自动编码器的理解,并证明了在图上的生成自我监督预训练的潜力。
translated by 谷歌翻译
自我监督的学习提供了一个有希望的途径,消除了在图形上的代表学习中的昂贵标签信息的需求。然而,为了实现最先进的性能,方法通常需要大量的负例,并依赖于复杂的增强。这可能是昂贵的,特别是对于大图。为了解决这些挑战,我们介绍了引导的图形潜伏(BGRL) - 通过预测输入的替代增强来学习图表表示学习方法。 BGRL仅使用简单的增强,并减轻了对否定例子对比的需求,因此通过设计可扩展。 BGRL胜过或匹配现有的几种建立的基准,同时降低了内存成本的2-10倍。此外,我们表明,BGR1可以缩放到半监督方案中的数亿个节点的极大的图表 - 实现最先进的性能并改善监督基线,其中表示仅通过标签信息而塑造。特别是,我们的解决方案以BGRL为中心,将kdd杯2021的开放图基准的大规模挑战组成了一个获奖条目,在比所有先前可用的基准更大的级别的图形订单上,从而展示了我们方法的可扩展性和有效性。
translated by 谷歌翻译
在本文中,我们研究了在非全粒图上进行节点表示学习的自我监督学习的问题。现有的自我监督学习方法通​​常假定该图是同质的,其中链接的节点通常属于同一类或具有相似的特征。但是,这种同质性的假设在现实图表中并不总是正确的。我们通过为图神经网络开发脱钩的自我监督学习(DSSL)框架来解决这个问题。 DSSL模仿了节点的生成过程和语义结构的潜在变量建模的链接,该过程将不同邻域之间的不同基础语义解散到自我监督的节点学习过程中。我们的DSSL框架对编码器不可知,不需要预制的增强,因此对不同的图表灵活。为了通过潜在变量有效地优化框架,我们得出了自我监督目标的较低范围的证据,并开发了具有变异推理的可扩展培训算法。我们提供理论分析,以证明DSSL享有更好的下游性能。与竞争性的自我监督学习基线相比,对各种类图基准的广泛实验表明,我们提出的框架可以显着取得更好的性能。
translated by 谷歌翻译
图表自我监督学习已被极大地用于从未标记的图表中学习表示形式。现有方法可以大致分为预测性学习和对比度学习,在这种学习中,后者通过更好的经验表现吸引了更多的研究注意力。我们认为,与对比模型相比,具有潜在增强和强大的解码器武器的预测模型可以实现可比较甚至更好的表示能力。在这项工作中,我们将数据增强引入潜在空间,以进行卓越的概括和提高效率。一个名为Wiener Graph DeonStolutional网络的新型图解码器相应地设计为从增强潜伏表示的信息重建。理论分析证明了图形滤波器的出色重建能力。各种数据集的广泛实验结果证明了我们方法的有效性。
translated by 谷歌翻译
Contrastive learning methods based on InfoNCE loss are popular in node representation learning tasks on graph-structured data. However, its reliance on data augmentation and its quadratic computational complexity might lead to inconsistency and inefficiency problems. To mitigate these limitations, in this paper, we introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL in short). Local-GCL consists of two key designs: 1) We fabricate the positive examples for each node directly using its first-order neighbors, which frees our method from the reliance on carefully-designed graph augmentations; 2) To improve the efficiency of contrastive learning on graphs, we devise a kernelized contrastive loss, which could be approximately computed in linear time and space complexity with respect to the graph size. We provide theoretical analysis to justify the effectiveness and rationality of the proposed methods. Experiments on various datasets with different scales and properties demonstrate that in spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
translated by 谷歌翻译
无监督的图形表示学习是图形数据的非琐碎主题。在结构化数据的无监督代表学习中对比学习和自我监督学习的成功激发了图表上的类似尝试。使用对比损耗的当前无监督的图形表示学习和预培训主要基于手工增强图数据之间的对比度。但是,由于不可预测的不变性,图数据增强仍然没有很好地探索。在本文中,我们提出了一种新颖的协作图形神经网络对比学习框架(CGCL),它使用多个图形编码器来观察图形。不同视图观察的特征充当了图形编码器之间对比学习的图表增强,避免了任何扰动以保证不变性。 CGCL能够处理图形级和节点级表示学习。广泛的实验表明CGCL在无监督的图表表示学习中的优势以及图形表示学习的手工数据增强组合的非必要性。
translated by 谷歌翻译
Inspired by the impressive success of contrastive learning (CL), a variety of graph augmentation strategies have been employed to learn node representations in a self-supervised manner. Existing methods construct the contrastive samples by adding perturbations to the graph structure or node attributes. Although impressive results are achieved, it is rather blind to the wealth of prior information assumed: with the increase of the perturbation degree applied on the original graph, 1) the similarity between the original graph and the generated augmented graph gradually decreases; 2) the discrimination between all nodes within each augmented view gradually increases. In this paper, we argue that both such prior information can be incorporated (differently) into the contrastive learning paradigm following our general ranking framework. In particular, we first interpret CL as a special case of learning to rank (L2R), which inspires us to leverage the ranking order among positive augmented views. Meanwhile, we introduce a self-ranking paradigm to ensure that the discriminative information among different nodes can be maintained and also be less altered to the perturbations of different degrees. Experiment results on various benchmark datasets verify the effectiveness of our algorithm compared with the supervised and unsupervised models.
translated by 谷歌翻译
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes-a crucial component in CL-remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation. CCS CONCEPTS• Computing methodologies → Unsupervised learning; Neural networks; Learning latent representations.
translated by 谷歌翻译
对比度学习是图表学习中的有效无监督方法,对比度学习的关键组成部分在于构建正和负样本。以前的方法通常利用图中节点的接近度作为原理。最近,基于数据增强的对比度学习方法已进步以显示视觉域中的强大力量,一些作品将此方法从图像扩展到图形。但是,与图像上的数据扩展不同,图上的数据扩展远不那么直观,而且很难提供高质量的对比样品,这为改进留出了很大的空间。在这项工作中,通过引入一个对抗性图视图以进行数据增强,我们提出了一种简单但有效的方法,对抗图对比度学习(ARIEL),以在合理的约束中提取信息性的对比样本。我们开发了一种称为稳定训练的信息正则化的新技术,并使用子图抽样以进行可伸缩。我们通过将每个图形实例视为超级节点,从节点级对比度学习到图级。 Ariel始终优于在现实世界数据集上的节点级别和图形级分类任务的当前图对比度学习方法。我们进一步证明,面对对抗性攻击,Ariel更加强大。
translated by 谷歌翻译
数据增强已广泛用于图像数据和语言数据,但仍然探索图形神经网络(GNN)。现有方法专注于从全局视角增强图表数据,并大大属于两个类型:具有特征噪声注入的结构操纵和对抗训练。但是,最近的图表数据增强方法忽略了GNNS“消息传递机制的本地信息的重要性。在这项工作中,我们介绍了本地增强,这通过其子图结构增强了节点表示的局部。具体而言,我们将数据增强模拟为特征生成过程。鉴于节点的功能,我们的本地增强方法了解其邻居功能的条件分布,并生成更多邻居功能,以提高下游任务的性能。基于本地增强,我们进一步设计了一个新颖的框架:La-GNN,可以以即插即用的方式应用于任何GNN模型。广泛的实验和分析表明,局部增强一致地对各种基准的各种GNN架构始终如一地产生性能改进。
translated by 谷歌翻译
尽管有关超图的机器学习吸引了很大的关注,但大多数作品都集中在(半)监督的学习上,这可能会导致繁重的标签成本和不良的概括。最近,对比学习已成为一种成功的无监督表示学习方法。尽管其他领域中对比度学习的发展繁荣,但对超图的对比学习仍然很少探索。在本文中,我们提出了Tricon(三个方向对比度学习),这是对超图的对比度学习的一般框架。它的主要思想是三个方向对比度,具体来说,它旨在在两个增强视图中最大化同一节点之间的协议(a),(b)在同一节点之间以及(c)之间,每个组之间的成员及其成员之间的协议(b) 。加上简单但令人惊讶的有效数据增强和负抽样方案,这三种形式的对比使Tricon能够在节点嵌入中捕获显微镜和介观结构信息。我们使用13种基线方法,5个数据集和两个任务进行了广泛的实验,这证明了Tricon的有效性,最明显的是,Tricon始终优于无监督的竞争对手,而且(半)受监督的竞争对手,大多数是由大量的节点分类的大量差额。
translated by 谷歌翻译
Network embedding (NE) approaches have emerged as a predominant technique to represent complex networks and have benefited numerous tasks. However, most NE approaches rely on a homophily assumption to learn embeddings with the guidance of supervisory signals, leaving the unsupervised heterophilous scenario relatively unexplored. This problem becomes especially relevant in fields where a scarcity of labels exists. Here, we formulate the unsupervised NE task as an r-ego network discrimination problem and develop the SELENE framework for learning on networks with homophily and heterophily. Specifically, we design a dual-channel feature embedding pipeline to discriminate r-ego networks using node attributes and structural information separately. We employ heterophily adapted self-supervised learning objective functions to optimise the framework to learn intrinsic node embeddings. We show that SELENE's components improve the quality of node embeddings, facilitating the discrimination of connected heterophilous nodes. Comprehensive empirical evaluations on both synthetic and real-world datasets with varying homophily ratios validate the effectiveness of SELENE in homophilous and heterophilous settings showing an up to 12.52% clustering accuracy gain.
translated by 谷歌翻译
在过去几年中开发的自我监督的学习和预训练策略尤其是卷积神经网络(CNNS)。重点应用这些方法也可以为图形神经网络(GNNS)没有统治。在此纸纸中,我们使用了一种基于图的自我监督信息,具有不同的丢失功能(条 - 低双胞胎[Zbontaret Al。,2021],HSIC [Tsaiet Al。,2021],Vicrog [Bardeset al。,2021])有前途的结果,当Pnnspreighly应用时。我们还提出了一种混合损失,将VICREG ANDHSIC的优势结合起来,称为vicreghsic。当施加到7种不同的数据集时,这些上述方法的穿孔伴有了诸如蛋白质蛋白质,蛋白质,IMDB-二进制等。前衰竭表明,我们形成的杂交损失函数优于4例中的4例中的剩余损失函数。此外,还探讨了不同批量,投影仪尺寸和数据增强的影响。
translated by 谷歌翻译
图表表示学习(GRL)对于图形结构数据分析至关重要。然而,大多数现有的图形神经网络(GNNS)严重依赖于标签信息,这通常是在现实世界中获得的昂贵。现有无监督的GRL方法遭受某些限制,例如对单调对比和可扩展性有限的沉重依赖。为了克服上述问题,鉴于最近的图表对比学习的进步,我们通过曲线图介绍了一种新颖的自我监控图形表示学习算法,即通过利用所提出的调整变焦方案来学习节点表示来学习节点表示。具体地,该机制使G-Zoom能够从多个尺度的图表中探索和提取自我监督信号:MICRO(即,节点级别),MESO(即,邻域级)和宏(即,子图级) 。首先,我们通过两个不同的图形增强生成输入图的两个增强视图。然后,我们逐渐地从节点,邻近逐渐为上述三个尺度建立三种不同的对比度,在那里我们最大限度地提高了横跨尺度的图形表示之间的协议。虽然我们可以从微距和宏观视角上从给定图中提取有价值的线索,但是邻域级对比度基于我们的调整后的缩放方案提供了可自定义选项的能力,以便手动选择位于微观和介于微观之间的最佳视点宏观透视更好地理解图数据。此外,为了使我们的模型可扩展到大图,我们采用了并行图形扩散方法来从图形尺寸下解耦模型训练。我们对现实世界数据集进行了广泛的实验,结果表明,我们所提出的模型始终始终优于最先进的方法。
translated by 谷歌翻译
本文研究了用于无监督场景的图形神经网络(GNN)的节点表示。具体地,我们推导了理论分析,并在不适当定义的监督信号时,在不同的图形数据集中提供关于GNN的非稳定性能的实证演示。 GNN的性能取决于节点特征平滑度和图形结构的局部性。为了平滑通过图形拓扑和节点功能测量的节点接近度的差异,我们提出了帆 - 一个小说\下划线{s} elf- \下划线{a} u段图对比度\下划线{i} ve \ nignline {l}收入框架,使用两个互补的自蒸馏正则化模块,\ emph {Ie},内部和图间知识蒸馏。我们展示了帆在各种图形应用中的竞争性能。即使使用单个GNN层,Sail也在各种基准数据集中持续竞争或更好的性能,与最先进的基线相比。
translated by 谷歌翻译
We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs-both derived using established graph convolutional network architectures. The learnt patch representations summarize subgraphs centered around nodes of interest, and can thus be reused for downstream node-wise learning tasks. In contrast to most prior approaches to unsupervised learning with GCNs, DGI does not rely on random walk objectives, and is readily applicable to both transductive and inductive learning setups. We demonstrate competitive performance on a variety of node classification benchmarks, which at times even exceeds the performance of supervised learning.
translated by 谷歌翻译
灵感来自最近应用于图像上的自我监督方法的成功,图形结构数据的自我监督学习已经看到迅速增长,特别是基于增强的对比方法。但是,我们认为没有精心设计的增强技术,图形上的增强可能是任意行为的,因为图形的底层语义可以急剧地改变。因此,现有增强的方法的性能高度依赖于增强方案的选择,即与增强相关联的超级参数。在本文中,我们提出了一种名为AFGRL的图表的一种新的增强自我监督学习框架。具体地,我们通过发现与图形共享本地结构信息和全局语义的节点来生成图表的替代视图。各种数据集的各种节点级任务,即节点分类,群集和相似性搜索的广泛实验证明了AFGRL的优越性。 AFGRL的源代码可在https://github.com/namkyeong/afgrl中获得。
translated by 谷歌翻译
对比学习已被广​​泛应用于图形表示学习,其中观测发生器在产生有效的对比样本方面发挥着重要作用。大多数现有的对比学习方法采用预定义的视图生成方法,例如节点滴或边缘扰动,这通常不能适应输入数据或保持原始语义结构。为了解决这个问题,我们提出了一份名为自动化图形对比学习(AutoGCL)的小说框架。具体而言,AutoGCL采用一组由自动增强策略协调的一组学习图形视图生成器,其中每个图形视图生成器都会学习输入调节的图形的概率分布。虽然AutoGCL中的图形视图发生器在生成每个对比样本中保留原始图的最代表性结构,但自动增强学会在整个对比学习程序中介绍适当的增强差异的政策。此外,AutoGCL采用联合培训策略,以培训学习的视图发生器,图形编码器和分类器以端到端的方式,导致拓扑异质性,在产生对比样本时的语义相似性。关于半监督学习,无监督学习和转移学习的广泛实验展示了我们在图形对比学习中的最先进的自动支持者框架的优越性。此外,可视化结果进一步证实,与现有的视图生成方法相比,可学习的视图发生器可以提供更紧凑和语义有意义的对比样本。
translated by 谷歌翻译