基于微服务的体系结构已成为云原生应用程序的普遍存在。每天利用越来越多的应用程序在云平台上部署的应用程序,需要进行更多的研究工作,以了解如何应用不同的策略来有效地管理各种云资源。大量研究已使用反应性和主动自动化策略部署了自动资源分配算法。但是,当前算法的效率仍然存在差距,例如从其体系结构和部署环境中捕获微服务的重要特征,例如,缺乏对图形依赖性的考虑。为了应对这一挑战,我们提出了Graph-PHPA,这是一种基于图的主动水平POD自动级别自动化策略,用于将云资源分配给微服务,以利用长期短期记忆(LSTM)和基于图形神经网络(GNN)的预测方法。我们使用BookInfo微服务在专用的测试环境中使用基于现实数据集生成的实时工作负载来评估图形phpa的性能。我们通过将图形PHPA与Kubernetes中基于规则的资源分配方案进行比较来证明了图形phpa的疗效。已经实施了广泛的实验,我们的结果说明了我们在不同测试方案中提出的资源节省方法优于基于反应性规则的基线算法的优势。
translated by 谷歌翻译
云自动缩放机制通常基于缩放集群的无功自动化规则,每当某些指标,例如情况下的平均CPU使用量超过预定义阈值。调整这些规则在缩放群集时变得特别繁琐,群集涉及不可忽略的时间来引导新实例,因为它经常在生产云服务中发生。要处理此问题,我们提出了一种基于在不久的将来进化的系统的自动缩放云服务的架构。我们的方法利用时序预测技术,如基于机器学习和人工神经网络的那些,以预测关键指标的未来动态,例如资源消耗度量,并在它们上应用基于阈值的缩放策略。结果是一种预测自动化策略,例如,能够在云应用程序的负载中自动预测峰值,并提前触发适当的缩放操作以适应流量的预期增加。我们将我们的方法称为开源OpenStack组件,它依赖于并扩展,并扩展了Monasca所提供的监控能力,从而增加了可以通过散热或尖林等管制成分来利用的预测度量。我们使用经常性神经网络和多层的Perceptron显示实验结果,作为预测器,与简单的线性回归和传统的非预测自动缩放策略进行比较。但是,所提出的框架允许根据需要轻松定制预测政策。
translated by 谷歌翻译
As the number of distributed services (or microservices) of cloud-native applications grows, resource management becomes a challenging task. These applications tend to be user-facing and latency-sensitive, and our goal is to continuously minimize the amount of CPU resources allocated while still satisfying the application latency SLO. Although previous efforts have proposed simple heuristics and sophisticated ML-based techniques, we believe that a practical resource manager should accurately scale CPU resources for diverse applications, with minimum human efforts and operation overheads. To this end, we ask: can we systematically break resource management down to subproblems solvable by practical policies? Based on the notion of CPU-throttle-based performance target, we decouple the mechanisms of SLO feedback and resource control, and implement a two-level framework -- Autothrottle. It combines a lightweight learned controller at the global level, and agile per-microservice controllers at the local level. We evaluate Autothrottle on three microservice applications, with both short-term and 21-day production workload traces. Empirical results show Autothrottle's superior CPU core savings up to 26.21% over the best-performing baselines across applications, while maintaining the latency SLO.
translated by 谷歌翻译
近年来,图形神经网络(GNN)与复发性神经网络(RNN)的变体相结合,在时空预测任务中达到了最先进的性能。对于流量预测,GNN模型使用道路网络的图形结构来解释链接和节点之间的空间相关性。最近的解决方案要么基于复杂的图形操作或避免预定义的图。本文提出了一种新的序列结构,以使用具有稀疏体系结构的GNN-RNN细胞在多个抽象的抽象上提取时空相关性,以减少训练时间与更复杂的设计相比。通过多个编码器编码相同的输入序列,并随着编码层的增量增加,使网络能够通过多级抽象来学习一般和详细的信息。我们进一步介绍了来自加拿大蒙特利尔的街道细分市场流量数据的新基准数据集。与高速公路不同,城市路段是循环的,其特征是复杂的空间依赖性。与基线方法相比,一小时预测的实验结果和我们的MSLTD街道级段数据集对我们的模型提高了7%以上,同时将计算资源要求提高了一半以上竞争方法。
translated by 谷歌翻译
关键性服务已被广泛部署在云环境中。为了成本效益,通常在服务器上共同介绍多个服务。因此,在这些复杂的共同定位案例中,运行时资源调度成为QoS控制的枢轴。但是,调度勘探空间随着服务器资源的增加而迅速扩大,使调度程序几乎无法迅速提供理想的解决方案。更重要的是,我们观察到计划探索空间中有“资源悬崖”。它们会影响勘探效率,并始终导致严重的QoS波动。在先前的调度程序中,无法轻松避免资源悬崖。为了解决这些问题,我们提出了一种基于ML的新型智能调度程序-OSML。它了解建筑提示(例如,IPC,Cache Misses,内存足迹等)之间的相关性,调度解决方案和QoS需求基于我们从在现成服务器上运行的11个广泛部署的服务中收集的数据集。 OSML采用多个ML模型来协作工作,以预测QoS变化,调整调度以及在复杂的共同定位案例中违反QoS违规行为。 OSML可以在调度期间明智地避免资源悬崖,并比以前的共同定位的LC服务更快地达到最佳解决方案。实验结果表明,与以前的研究相比,OSML支持较高的负载,并符合QoS目标较低的QoS目标,而收敛时间较短。
translated by 谷歌翻译
时空时间序列的神经预测推动了几个相关应用领域的研究和工业创新。图神经网络(GNN)通常是预测体系结构的核心组成部分。但是,在大多数时空gnns中,计算复杂度比序列时间长度缩放到二次因子,图中链接的数量是图中的链接数,因此阻碍了这些模型在大图和长时间序列中的应用。尽管在静态图的背景下提出了提高可伸缩性的方法,但很少有研究工作专门用于时空情况。为了填补这一空白,我们提出了一个可扩展的体系结构,该体系结构利用了时间和空间动力学的有效编码。特别是,我们使用一个随机的复发神经网络将输入时间序列的历史嵌入到包括多尺度时间动力学的高维状态表示中。然后,使用图形邻接矩阵的不同功率沿空间维度沿空间维度传播,以生成以富含时空特征池的特征的节点嵌入。可以在不监督的方式中有效地预先计算所得的节点嵌入,然后将其馈送到馈送前向解码器,该解码器学会映射多尺度时空表示形式为预测。然后,可以通过对节点的嵌入而无需破坏任何依赖性,从而使训练过程在节点方面并行化,从而可以对大型网络进行可扩展性。相关数据集的经验结果表明,我们的方法可以与最新技术的状态竞争,同时大大减轻了计算负担。
translated by 谷歌翻译
情绪预测在心理健康和情绪感知计算中起着至关重要的作用。情绪的复杂性质是由于其对一个人的生理健康,精神状态和周围环境的依赖而产生的,这使其预测一项艰巨的任务。在这项工作中,我们利用移动传感数据来预测幸福和压力。除了一个人的生理特征外,我们还通过天气和社交网络纳入了环境的影响。为此,我们利用电话数据来构建社交网络并开发机器学习体系结构,该架构从图形网络的多个用户中汇总信息,并将其与数据的时间动态集成在一起,以预测所有用户的情感。社交网络的构建不会在用户的EMA或数据收集方面产生额外的成本,也不会引起隐私问题。我们提出了一种自动化用户社交网络影响预测的架构,能够处理现实生活中社交网络的动态分布,从而使其可扩展到大规模网络。我们广泛的评估突出了社交网络集成提供的改进。我们进一步研究了图形拓扑对模型性能的影响。
translated by 谷歌翻译
随着越来越多的数据,数据处理工作负载和其资源使用的管理变得越来越重要。由于管理专用基础架构是在许多情况下不可行或不经济的情况下,用户逐步执行其各自的工作负载在云中。由于工作负载和资源的配置通常是具有挑战性的,已经提出了各种方法,以便快速朝着良好的配置简化或基于先前运行的数据确定一个。仍然,培训此类方法的性能数据通常缺乏,并且必须昂贵地收集。在本文中,我们提出了一种协作方法,用于在用户之间共享匿名工作负载执行迹线,为常规模式进行挖掘,并利用历史工作负载的集群以供将来的优化。我们在公开可用的跟踪数据集上评估我们的原型实现,以便在公开的跟踪数据集上挖掘工作负载执行图,并演示通过迹线确定的工作负载群集的预测值。
translated by 谷歌翻译
准确的交通预测对于智能城市实现交通控制,路线计划和流动检测至关重要。尽管目前提出了许多时空方法,但这些方法在同步捕获流量数据的时空依赖性方面缺陷。此外,大多数方法忽略了随着流量数据的变化而产生的道路网络节点之间的动态变化相关性。我们建议基于神经网络的时空交互式动态图卷积网络(STIDGCN),以应对上述流量预测的挑战。具体而言,我们提出了一个交互式动态图卷积结构,该结构将序列划分为间隔,并通过交互式学习策略同步捕获流量数据的时空依赖性。交互式学习策略使StidGCN有效地预测。我们还提出了一个新颖的动态图卷积模块,以捕获由图生成器和融合图卷积组成的流量网络中动态变化的相关性。动态图卷积模块可以使用输入流量数据和预定义的图形结构来生成图形结构。然后将其与定义的自适应邻接矩阵融合,以生成动态邻接矩阵,该矩阵填充了预定义的图形结构,并模拟了道路网络中节点之间的动态关联的产生。在四个现实世界流量流数据集上进行的广泛实验表明,StidGCN的表现优于最先进的基线。
translated by 谷歌翻译
通信网络是当代社会中的重要基础设施。仍存在许多挑战,在该活性研究区域中不断提出新的解决方案。近年来,为了模拟网络拓扑,基于图形的深度学习在通信网络中的一系列问题中实现了最先进的性能。在本调查中,我们使用基于不同的图形的深度学习模型来审查快速增长的研究机构,例如,使用不同的图形深度学习模型。图表卷积和曲线图注意网络,在不同类型的通信网络中的各种问题中,例如,无线网络,有线网络和软件定义的网络。我们还为每项研究提供了一个有组织的问题和解决方案列表,并确定了未来的研究方向。据我们所知,本文是第一个专注于在涉及有线和无线场景的通信网络中应用基于图形的深度学习方法的调查。要跟踪后续研究,创建了一个公共GitHub存储库,其中相关文件将不断更新。
translated by 谷歌翻译
预测网络链路上的带宽利用率对于检测拥塞是非常有用的,以便在发生之前校正它们。在本文中,我们提出了一种解决方案来预测不同网络链路之间的带宽利用,具有非常高的精度。创建模拟网络以收集与每个接口上的网络链路性能相关的数据。使用功能工程处理和扩展这些数据,以便创建培训集。我们评估并比较三种类型的机器学习算法,即Arima(自回归积分移动平均线),MLP(多层Perceptron)和LSTM(长短期存储器),以预测未来的带宽消耗。 LSTM以非常精确的预测表达ARIMA和MLP,很少超过3 \%误差(ARIMA的40 \%,对于MLP为20 \%)。然后,我们表明所提出的解决方案可以实时使用,并通过软件定义的网络(SDN)平台管理的反应实时使用。
translated by 谷歌翻译
Workloads in modern cloud data centers are becoming increasingly complex. The number of workloads running in cloud data centers has been growing exponentially for the last few years, and cloud service providers (CSP) have been supporting on-demand services in real-time. Realizing the growing complexity of cloud environment and cloud workloads, hardware vendors such as Intel and AMD are increasingly introducing cloud-specific workload acceleration features in their CPU platforms. These features are typically targeted towards popular and commonly-used cloud workloads. Nonetheless, uncommon, customer-specific workloads (unknown workloads), if their characteristics are different from common workloads (known workloads), may not realize the potential of the underlying platform. To address this problem of realizing the full potential of the underlying platform, we develop a machine learning based technique to characterize, profile and predict workloads running in the cloud environment. Experimental evaluation of our technique demonstrates good prediction performance. We also develop techniques to analyze the performance of the model in a standalone manner.
translated by 谷歌翻译
Edge Federation是一种新的计算范式,无缝地互连多个边缘服务提供商的资源。此类系统中的一个关键挑战是在受约束设备中部署基于延迟和AI的资源密集型应用程序。为了应对这一挑战,我们提出了一种新型的基于记忆有效的深度学习模型,即生成优化网络(GON)。与甘斯不同,成人使用单个网络既区分输入又生成样本,从而大大降低了它们的内存足迹。利用奇数的低内存足迹,我们提出了一种称为Dragon的分散性故障耐受性方法,该方法运行模拟(按照数字建模双胞胎)来快速预测和优化边缘联邦的性能。在多个基于Raspberry-Pi的联合边缘配置上使用现实世界边缘计算基准测试的广泛实验表明,龙可以胜过故障检测和服务质量(QOS)指标的基线方法。具体而言,所提出的方法给出了与最佳深度学习方法(DL)方法更高的F1分数,而与启发式方法相比,记忆力较低。这使得违反能源消耗,响应时间和服务水平协议分别提高了74%,63%和82%。
translated by 谷歌翻译
建筑物和校园的电力负荷预测随着分布式能源(DERs)的渗透而越来越重要。高效的操作和调度DER需要合理准确的未来能耗预测,以便进行现场发电和存储资产的近实时优化派遣。电力公用事业公司传统上对跨越地理区域的负载口袋进行了负荷预测,因此预测不是建筑物和校园运营商的常见做法。鉴于电网交互式高效建筑域中的研究和原型趋势不断发展,超出简单算法预测精度的特点对于确定智能建筑算法的真正效用很重要。其他特性包括部署架构的整体设计和预测系统的运行效率。在这项工作中,我们介绍了一个基于深度学习的负载预测系统,将来预测1小时的时间间隔18小时。我们还讨论了与此类系统的实时部署相关的挑战,以及通过在国家可再生能源实验室智能校园计划中开发的全功能预测系统提供的研究机会。
translated by 谷歌翻译
在许多研究中已经表明,考虑相关股票数据预测股票价格变动的重要性,但是,用于建模,嵌入和分析相互关联股票行为的先进图形技术尚未被广泛利用,以预测股票价格变动。该领域的主要挑战是找到一种建模任意股票之间现有关系的方法,并利用这种模型来改善这些股票的预测绩效。该领域中的大多数现有方法都取决于基本的图形分析技术,预测能力有限,并且缺乏通用性和灵活性。在本文中,我们介绍了一个名为GCNET的新颖框架,该框架将任意股票之间的关系建模为称为“影响网络”的图形结构,并使用一组基于历史的预测模型来推断出股票子集的合理初始标签图中的节点。最后,GCNET使用图形卷积网络算法来分析此部分标记的图形,并预测图中每个库存的下一个运动价格方向。 GCNET是一个一般预测框架,可以根据其历史数据来预测相互作用股票的价格波动。我们对纳斯达克指数一组股票的实验和评估表明,GCNET在准确性和MCC测量方面显着提高了SOTA的性能。
translated by 谷歌翻译
交通预测对于新时代智能城市的交通建设至关重要。但是,流量数据的复杂空间和时间依赖性使流量预测极具挑战性。大多数现有的流量预测方法都依赖于预定义的邻接矩阵来对时空依赖性建模。但是,道路交通状态是高度实时的,因此邻接矩阵应随着时间的推移而动态变化。本文介绍了一个新的多空间融合图复发网络(MSTFGRN),以解决上述问题。该网络提出了一种数据驱动的加权邻接矩阵生成方法,以补偿预定义的邻接矩阵未反映的实时空间依赖性。它还通过在不同矩的平行时空关系上执行新的双向时空融合操作来有效地学习隐藏的时空依赖性。最后,通过将全局注意机制集成到时空融合模块中,同时捕获了全局时空依赖性。对四个大型现实世界流量数据集进行的广泛试验表明,与替代基线相比,我们的方法实现了最先进的性能。
translated by 谷歌翻译
随着物联网(IoT),边缘计算和云计算的普及,正在开发越来越多的流分析应用程序,包括在物联网传感数据之上的实时趋势预测和对象检测。一种流行的流分析类型是基于重复的神经网络(RNN)基于深度学习模型的时间序列或序列数据预测和预测。与假设数据提前可用并且不会更改的传统分析不同,流分析涉及正在连续生成的数据,并且数据趋势/分布可能会发生变化(又称概念漂移),这将导致预测/预测准确性下降时间。另一个挑战是为流分析找到最佳的资源提供,以达到良好的总体延迟。在本文中,我们研究了如何使用称为长期记忆(LSTM)的RNN模型来最佳利用边缘和云资源,以获得更好的准确性和流式分析。我们为混合流分析提出了一个新颖的边缘云集成框架,该框架支持云上边缘和高容量训练的低潜伏期推断。为了实现灵活的部署,我们研究了部署混合学习框架的不同方法,包括以边缘为中心,以云为中心和边缘云集成。此外,我们的混合学习框架可以根据历史数据进行预训练的LSTM模型,并根据最新数据定期重新训练LSTM模型的推理结果。使用现实世界和模拟流数据集,我们的实验表明,在延迟方面,提出的Edge-Cloud部署是所有三种部署类型中最好的。为了准确性,实验表明我们的动态学习方法在所有三种概念漂移方案的所有学习方法中都表现出最好的作用。
translated by 谷歌翻译
准确的短期太阳能和风电预测在电力系统的规划和运营中起着重要作用。然而,由于局部天气条件,由于局部天气条件,因此,可再生能源的短期功率预测始终被认为是复杂的回归问题,而输出能力的波动和动态变化规律,即时空相关性。为了同时捕获时空特征,本文提出了一种新的基于图的神经网络的短期功率预测方法,它结合了图形卷积网络(GCN)和长短期内存(LSTM)。具体地,GCN用于学习相邻可再生能量之间的复杂空间相关性,并且LSTM用于学习功率曲线的动态变化。仿真结果表明,该拟议的混合方法可以模拟可再生能源的时空相关性,其性能优于现实世界数据集上的流行基线。
translated by 谷歌翻译
The emergence of latency-critical AI applications has been supported by the evolution of the edge computing paradigm. However, edge solutions are typically resource-constrained, posing reliability challenges due to heightened contention for compute and communication capacities and faulty application behavior in the presence of overload conditions. Although a large amount of generated log data can be mined for fault prediction, labeling this data for training is a manual process and thus a limiting factor for automation. Due to this, many companies resort to unsupervised fault-tolerance models. Yet, failure models of this kind can incur a loss of accuracy when they need to adapt to non-stationary workloads and diverse host characteristics. To cope with this, we propose a novel modeling approach, called DeepFT, to proactively avoid system overloads and their adverse effects by optimizing the task scheduling and migration decisions. DeepFT uses a deep surrogate model to accurately predict and diagnose faults in the system and co-simulation based self-supervised learning to dynamically adapt the model in volatile settings. It offers a highly scalable solution as the model size scales by only 3 and 1 percent per unit increase in the number of active tasks and hosts. Extensive experimentation on a Raspberry-Pi based edge cluster with DeFog benchmarks shows that DeepFT can outperform state-of-the-art baseline methods in fault-detection and QoS metrics. Specifically, DeepFT gives the highest F1 scores for fault-detection, reducing service deadline violations by up to 37\% while also improving response time by up to 9%.
translated by 谷歌翻译
Reliable forecasting of traffic flow requires efficient modeling of traffic data. Different correlations and influences arise in a dynamic traffic network, making modeling a complicated task. Existing literature has proposed many different methods to capture the complex underlying spatial-temporal relations of traffic networks. However, methods still struggle to capture different local and global dependencies of long-range nature. Also, as more and more sophisticated methods are being proposed, models are increasingly becoming memory-heavy and, thus, unsuitable for low-powered devices. In this paper, we focus on solving these problems by proposing a novel deep learning framework - STLGRU. Specifically, our proposed STLGRU can effectively capture both local and global spatial-temporal relations of a traffic network using memory-augmented attention and gating mechanism. Instead of employing separate temporal and spatial components, we show that our memory module and gated unit can learn the spatial-temporal dependencies successfully, allowing for reduced memory usage with fewer parameters. We extensively experiment on several real-world traffic prediction datasets to show that our model performs better than existing methods while the memory footprint remains lower. Code is available at \url{https://github.com/Kishor-Bhaumik/STLGRU}.
translated by 谷歌翻译