空间谱总变化(SSTV)模型已被广泛用作高光谱图像(HSI)的有效正规化,用于各种应用,例如混合噪声去除。但是,由于SSTV统一地计算局部空间差异,因此很难消除噪声,同时保留具有细边和纹理的复杂空间结构,尤其是在高噪声强度的情况下。为了解决这个问题,我们提出了一种称为Graph-SSTV(GSSTV)的新电视型正则化,该图从噪声HSIS明确反映了目标HSI的空间结构,并结合了基于此图的加权空间差异操作员。此外,我们将混合噪声删除问题作为涉及GSSTV的凸优化问题,并基于原始的双重分裂方法开发有效的算法来解决此问题。最后,我们通过消除混合噪声的实验与现有的HSI正则化模型相比,证明了GSSTV的有效性。源代码将在https://www.mdi.c.titech.ac.ac.jp/publications/gsstv上找到。
translated by 谷歌翻译
本文提出了一种基于凸优化的新型高空间分辨率高光谱(HR-HS)图像估计方法。该方法假定空间分辨率HS(LR-HS)图像和指南图像作为观测值,其中两个观察结果都被噪声污染。我们的方法同时估算了HR-HS图像和无噪声指南图像,因此该方法即使被大噪声污染了指南图像中的空间信息也可以利用空间信息。提出的估计问题通过正则化采用混合空间 - 光谱总变化,并评估HR-HS和指南图像之间的边缘相似性,以有效地在指南图像中对HR-HS图像和空间细节信息有效地使用APRIORI知识。为了有效地解决该问题,我们采用了一种原始的二重分裂方法。实验证明了我们的方法的性能以及对几种现有方法的优势。
translated by 谷歌翻译
在本文中,我们提出了一种用于HSI去噪的强大主成分分析的新型非耦合方法,其侧重于分别同时为低级和稀疏组分的等级和列方向稀疏性产生更准确的近似。特别是,新方法采用日志确定级别近似和新颖的$ \ ell_ {2,\ log} $常规,以便分别限制组件矩阵的本地低级或列明智地稀疏属性。对于$ \ ell_ {2,\ log} $ - 正常化的收缩问题,我们开发了一个高效的封闭式解决方案,该解决方案名为$ \ ell_ {2,\ log} $ - 收缩运算符。新的正则化和相应的操作员通常可以用于需要列明显稀疏性的其他问题。此外,我们在基于日志的非凸rpca模型中强加了空间光谱总变化正则化,这增强了从恢复的HSI中的空间和光谱视图中的全局转换平滑度和光谱一致性。关于模拟和实际HSIS的广泛实验证明了所提出的方法在去噪HSIS中的有效性。
translated by 谷歌翻译
最近,从图像中提取的不同组件的低秩属性已经考虑在MAN Hypspectral图像去噪方法中。然而,这些方法通常将3D矩阵或1D向量展开,以利用现有信息,例如非识别空间自相似性(NSS)和全局光谱相关(GSC),其破坏了高光谱图像的内在结构相关性(HSI) )因此导致恢复质量差。此外,由于在HSI的原始高维空间中的矩阵和张量的矩阵和张量的参与,其中大多数受到重大计算负担问题。我们使用子空间表示和加权低级张量正则化(SWLRTR)进入模型中以消除高光谱图像中的混合噪声。具体地,为了在光谱频带中使用GSC,将噪声HSI投影到简化计算的低维子空间中。之后,引入加权的低级张量正则化术语以表征缩减图像子空间中的前导。此外,我们设计了一种基于交替最小化的算法来解决非耦合问题。模拟和实时数据集的实验表明,SWLRTR方法比定量和视觉上的其他高光谱去噪方法更好。
translated by 谷歌翻译
低级别在高光谱图像(HSI)降级任务中很重要。根据张量的奇异值分解定义的张量核标准(TNN)是描述HSI低级别的最新方法。但是,TNN忽略了HSI在解决deno的任务时的某些身体含义,从而导致了次优的降级性能。在本文中,我们提出了用于HSI降解任务的多模式和频率加权张量核定常(MFWTNN)和非凸MFWTNN。首先,我们研究了频率切片的物理含义,并重新考虑其权重以提高TNN的低级别表示能力。其次,我们考虑两个空间维度和HSI的光谱维度之间的相关性,并将上述改进与TNN相结合以提出MFWTNN。第三,我们使用非凸功能来近似频率张量的秩函数,并提出非MFWTNN以更好地放松MFWTNN。此外,我们自适应地选择更大的权重,用于切片,主要包含噪声信息和较小的重量,用于包含配置文件信息的切片。最后,我们开发了基于乘数(ADMM)算法的有效交替方向方法来求解所提出的模型,并在模拟和真实的HSI数据集中证实了我们的模型的有效性。
translated by 谷歌翻译
红外小目标检测是红外系统中的重要基本任务。因此,已经提出了许多红外小目标检测方法,其中低级模型已被用作强大的工具。然而,基于低级别的方法为不同的奇异值分配相同的权重,这将导致背景估计不准确。考虑到不同的奇异值具有不同的重要性,并且应判别处理,本文提出了一种用于红外小目标检测的非凸张力低秩近似(NTLA)方法。在我们的方法中,NTLA正则化将不同的权重自适应分配给不同的奇异值以进行准确背景估计。基于所提出的NTLA,我们提出了不对称的空间 - 时间总变化(ASTTV)正则化,以实现复杂场景中的更准确的背景估计。与传统的总变化方法相比,ASTTV利用不同的平滑度强度进行空间和时间正则化。我们设计了一种有效的算法来查找我们方法的最佳解决方案。与一些最先进的方法相比,所提出的方法达到各种评估指标的改进。各种复杂场景的广泛实验结果表明,我们的方法具有强大的鲁棒性和低误报率。代码可在https://github.com/liuting20a/asttv-ntla获得。
translated by 谷歌翻译
Deconvolution is a widely used strategy to mitigate the blurring and noisy degradation of hyperspectral images~(HSI) generated by the acquisition devices. This issue is usually addressed by solving an ill-posed inverse problem. While investigating proper image priors can enhance the deconvolution performance, it is not trivial to handcraft a powerful regularizer and to set the regularization parameters. To address these issues, in this paper we introduce a tuning-free Plug-and-Play (PnP) algorithm for HSI deconvolution. Specifically, we use the alternating direction method of multipliers (ADMM) to decompose the optimization problem into two iterative sub-problems. A flexible blind 3D denoising network (B3DDN) is designed to learn deep priors and to solve the denoising sub-problem with different noise levels. A measure of 3D residual whiteness is then investigated to adjust the penalty parameters when solving the quadratic sub-problems, as well as a stopping criterion. Experimental results on both simulated and real-world data with ground-truth demonstrate the superiority of the proposed method.
translated by 谷歌翻译
It is known that the decomposition in low-rank and sparse matrices (\textbf{L+S} for short) can be achieved by several Robust PCA techniques. Besides the low rankness, the local smoothness (\textbf{LSS}) is a vitally essential prior for many real-world matrix data such as hyperspectral images and surveillance videos, which makes such matrices have low-rankness and local smoothness properties at the same time. This poses an interesting question: Can we make a matrix decomposition in terms of \textbf{L\&LSS +S } form exactly? To address this issue, we propose in this paper a new RPCA model based on three-dimensional correlated total variation regularization (3DCTV-RPCA for short) by fully exploiting and encoding the prior expression underlying such joint low-rank and local smoothness matrices. Specifically, using a modification of Golfing scheme, we prove that under some mild assumptions, the proposed 3DCTV-RPCA model can decompose both components exactly, which should be the first theoretical guarantee among all such related methods combining low rankness and local smoothness. In addition, by utilizing Fast Fourier Transform (FFT), we propose an efficient ADMM algorithm with a solid convergence guarantee for solving the resulting optimization problem. Finally, a series of experiments on both simulations and real applications are carried out to demonstrate the general validity of the proposed 3DCTV-RPCA model.
translated by 谷歌翻译
在各种图像处理和计算机视觉任务中经常遇到颜色图像Denoising。一种传统的策略是将RGB图像转换为较小相关的颜色空间,并分别将新空间的每个通道定义。但是,这种策略无法完全利用渠道之间的相关信息,并且不足以获得令人满意的结果。为了解决这个问题,本文提出了一个新的多通道优化模型,用于在核定标准下减去Frobenius规范最小化框架下的颜色图像Deno。具体而言,基于块匹配,将颜色图像分解为重叠的RGB补丁。对于每个补丁,我们堆叠其相似的邻居以形成相应的补丁矩阵。提出的模型是在补丁矩阵上执行的,以恢复其无噪声版本。在恢复过程中,a)引入权重矩阵以充分利用通道之间的噪声差; b)单数值是自适应缩小的,而无需分配权重。有了他们,提议的模型可以在保持简单的同时取得有希望的结果。为了解决提出的模型,基于乘数框架的交替方向方法构建了准确有效的算法。每个更新步骤的解决方案可以在封闭式中分析表达。严格的理论分析证明了所提出的算法产生的解决方案序列会收敛到其各自的固定点。合成和真实噪声数据集的实验结果证明了所提出的模型优于最先进的模型。
translated by 谷歌翻译
基于深度学习(DL)的高光谱图像(HSIS)去噪方法直接学习观察到的嘈杂图像和底层清洁图像之间的非线性映射。他们通常不考虑HSIS的物理特征,因此使他们缺乏了解他们的去噪机制的关键。为了解决这个问题,我们为HSI去噪提出了一种新颖的模型指导可解释网络。具体而言,完全考虑HSI的空间冗余,光谱低秩和光谱空间特性,我们首先建立基于子空间的多维稀疏模型。该模型首先将观察到的HSIS投入到低维正交子空间,然后表示具有多维字典的投影图像。之后,该模型展开到名为SMDS-Net的端到端网络中,其基本模块与模型的去噪程序无缝连接。这使得SMDS-Net传达清晰的物理意义,即学习HSIS的低级别和稀疏性。最后,通过端到端培训获得包括词典和阈值处理的所有关键变量。广泛的实验和综合分析证实了我们对最先进的HSI去噪方法的方法的去噪能力和可解释性。
translated by 谷歌翻译
从X射线冠状动脉造影(XCA)图像序列中提取对比度的血管对于直觉诊断和治疗具有重要的临床意义。在这项研究中,XCA图像序列O被认为是三维张量输入,血管层H是稀疏张量,而背景层B是低级别张量。使用张量核标准(TNN)最小化,提出了一种基于张量的强稳定主成分分析(TRPCA)的新型血管层提取方法。此外,考虑了血管的不规则运动和周围无关组织的动态干扰,引入了总变化(TV)正规化时空约束,以分离动态背景E。 - 阶段区域生长(TSRG)方法用于血管增强和分割。全局阈值分割用作获得主分支的预处理,并使用ra样特征(RLF)滤波器来增强和连接破碎的小段,最终的容器掩模是通过结合两个中间结果来构建的。我们评估了TV-TRPCA算法的前景提取的可见性以及TSRG算法在真实临床XCA图像序列和第三方数据库上的血管分割的准确性。定性和定量结果都验证了所提出的方法比现有的最新方法的优越性。
translated by 谷歌翻译
图像恢复仍然是图像处理中有挑战性的任务。许多方法解决这个问题,通常通过最小化非平滑惩罚的共轨似然函数来解决。虽然解决方案很容易以理论保证来解释,但其估计依赖于可能需要时间的优化过程。考虑到图像分类和分割深度学习的研究努力,这类方法提供了一个严重的替代方案来执行图像恢复,但要挑战解决逆问题。在这项工作中,我们设计了一个名为Deeppdnet的深网络,从原始双近迭代构建,与之前的分析有关的标准惩罚可能性,允许我们利用两个世界。我们用固定图层为深度网络进行重构Condat-Vu原始 - 双混梯度(PDHG)算法的特定实例。学习的参数均为PDHG算法阶梯大小和惩罚中涉及的分析线性运算符(包括正则化参数)。允许这些参数从层变为另一个参数。提出了两种不同的学习策略:提出了“全学习”和“部分学习”,第一个是数值最有效的,而第二个是依赖于标准约束确保标准PDHG迭代中的收敛。此外,研究了全局和局部稀疏分析,以寻求更好的特征表示。我们将所提出的方法应用于MNIST和BSD68数据集上的图像恢复以及BSD100和SET14数据集的单个图像超分辨率。广泛的结果表明,建议的DeepPDNET在MNIST和更复杂的BSD68,BSD100和SET14数据集中展示了卓越的性能,用于图像恢复和单图像超分辨率任务。
translated by 谷歌翻译
基于深度学习的高光谱图像(HSI)恢复方法因其出色的性能而广受欢迎,但每当任务更改的细节时,通常都需要昂贵的网络再培训。在本文中,我们建议使用有效的插入方法以统一的方法恢复HSI,该方法可以共同保留基于优化方法的灵活性,并利用深神经网络的强大表示能力。具体而言,我们首先开发了一个新的深HSI DeNoiser,利用了门控复发单元,短期和长期的跳过连接以及增强的噪声水平图,以更好地利用HSIS内丰富的空间光谱信息。因此,这导致在高斯和复杂的噪声设置下,在HSI DeNosing上的最新性能。然后,在处理各种HSI恢复任务之前,将提议的DeNoiser插入即插即用的框架中。通过对HSI超分辨率,压缩感测和内部进行的广泛实验,我们证明了我们的方法经常实现卓越的性能,这与每个任务上的最先进的竞争性或甚至更好任何特定任务的培训。
translated by 谷歌翻译
编码的光圈快照光谱成像(CASSI)是一种用于从一个或几个二维投影测量值重建三维高光谱图像(HSI)的技术。但是,较少的投影测量或更多的光谱通道导致了严重的问题,在这种情况下,必须应用正则化方法。为了显着提高重建的准确性,本文提出了一种基于自然图像的稀疏性和深层图像先验(FAMA-SDIP)的快速交流最小化算法。通过将深层图像(DIP)集成到压缩感应(CS)重建原理中,提出的算法可以在没有任何培训数据集的情况下实现最新结果。广泛的实验表明,FAMA-SDIP方法显着优于模拟和实际HSI数据集的主要主要方法。
translated by 谷歌翻译
我们在凸优化和深度学习的界面上引入了一类新的迭代图像重建算法,以启发凸出和深度学习。该方法包括通过训练深神网络(DNN)作为Denoiser学习先前的图像模型,并将其替换为优化算法的手工近端正则操作员。拟议的airi(``````````````''''')框架,用于成像复杂的强度结构,并从可见性数据中扩散和微弱的发射,继承了优化的鲁棒性和解释性,以及网络的学习能力和速度。我们的方法取决于三个步骤。首先,我们从光强度图像设计了一个低动态范围训练数据库。其次,我们以从数据的信噪比推断出的噪声水平来训练DNN Denoiser。我们使用训练损失提高了术语,可确保算法收敛,并通过指示进行即时数据库动态范围增强。第三,我们将学习的DeNoiser插入前向后的优化算法中,从而产生了一个简单的迭代结构,该结构与梯度下降的数据输入步骤交替出现Denoising步骤。我们已经验证了SARA家族的清洁,优化算法的AIRI,并经过DNN训练,可以直接从可见性数据中重建图像。仿真结果表明,AIRI与SARA及其基于前卫的版本USARA具有竞争力,同时提供了显着的加速。干净保持更快,但质量较低。端到端DNN提供了进一步的加速,但质量远低于AIRI。
translated by 谷歌翻译
通常必须处理值循环并可以表示为复杂圆上的点的信号或图像,例如包裹相,角度,方向或颜色色调。我们考虑一个Tikhonov型正则化模型,以平滑或插值在任意图上定义的圆圈值信号。我们提出了将这个非凸问题作为半决赛程序的凸松弛,以及一种有效的算法来解决它。
translated by 谷歌翻译
本文介绍了在混合高斯 - 突破噪声条件下重建高分辨率(HR)LF图像的GPU加速计算框架。主要重点是考虑处理速度和重建质量的高性能方法。从统计的角度来看,我们得出了一个联合$ \ ell^1 $ - $ \ ell^2 $数据保真度,用于惩罚人力资源重建错误,考虑到混合噪声情况。对于正则化,我们采用了加权非本地总变异方法,这使我们能够通过适当的加权方案有效地实现LF图像。我们表明,乘数算法(ADMM)的交替方向方法可用于简化计算复杂性,并在GPU平台上导致高性能并行计算。对合成4D LF数据集和自然图像数据集进行了广泛的实验,以验证提出的SR模型的鲁棒性并评估加速优化器的性能。实验结果表明,与最先进的方法相比,我们的方法在严重的混合噪声条件下实现了更好的重建质量。此外,提议的方法克服了处理大规模SR任务的先前工作的局限性。虽然适合单个现成的GPU,但建议的加速器提供的平均加速度为2.46 $ \ times $和1.57 $ \ times $,分别为$ \ times 2 $和$ \ times 3 $ SR任务。此外,与CPU执行相比,达到$ 77 \ times $的加速。
translated by 谷歌翻译
As a convex relaxation of the low rank matrix factorization problem, the nuclear norm minimization has been attracting significant research interest in recent years. The standard nuclear norm minimization regularizes each singular value equally to pursue the convexity of the objective function. However, this greatly restricts its capability and flexibility in dealing with many practical problems (e.g., denoising), where the singular values have clear physical meanings and should be treated differently. In this paper we study the weighted nuclear norm minimization (WNNM) problem, where the singular values are assigned different weights. The solutions of the WNNM problem are analyzed under different weighting conditions. We then apply the proposed WNNM algorithm to image denoising by exploiting the image nonlocal self-similarity. Experimental results clearly show that the proposed WNNM algorithm outperforms many state-of-the-art denoising algorithms such as BM3D in terms of both quantitative measure and visual perception quality.
translated by 谷歌翻译
Tensor robust principal component analysis (TRPCA) is a promising way for low-rank tensor recovery, which minimizes the convex surrogate of tensor rank by shrinking each tensor singular values equally. However, for real-world visual data, large singular values represent more signifiant information than small singular values. In this paper, we propose a nonconvex TRPCA (N-TRPCA) model based on the tensor adjustable logarithmic norm. Unlike TRPCA, our N-TRPCA can adaptively shrink small singular values more and shrink large singular values less. In addition, TRPCA assumes that the whole data tensor is of low rank. This assumption is hardly satisfied in practice for natural visual data, restricting the capability of TRPCA to recover the edges and texture details from noisy images and videos. To this end, we integrate nonlocal self-similarity into N-TRPCA, and further develop a nonconvex and nonlocal TRPCA (NN-TRPCA) model. Specifically, similar nonlocal patches are grouped as a tensor and then each group tensor is recovered by our N-TRPCA. Since the patches in one group are highly correlated, all group tensors have strong low-rank property, leading to an improvement of recovery performance. Experimental results demonstrate that the proposed NN-TRPCA outperforms some existing TRPCA methods in visual data recovery. The demo code is available at https://github.com/qguo2010/NN-TRPCA.
translated by 谷歌翻译
张量完成是从部分观察到的条目中估算高阶数据缺失值的问题。由于盛行异常值而引起的数据腐败对传统的张量完成算法提出了重大挑战,这促进了减轻异常值效果的强大算法的发展。但是,现有的强大方法在很大程度上假定腐败很少,这可能在实践中可能不存在。在本文中,我们开发了一种两阶段的稳健张量完成方法,以处理张张量的视觉数据,并具有大量的严重损坏。提出了一个新颖的粗到精细框架,该框架使用全局粗完成结果来指导局部贴剂细化过程。为了有效地减轻大量异常值对张量恢复的影响,我们开发了一种新的基于M估计器的稳健张环回收方法,该方法可以自适应地识别异常值并减轻其在优化中的负面影响。实验结果表明,所提出的方法优于最先进的稳定算法以完成张量。
translated by 谷歌翻译