这是本文的第二部分,为异质变化检测(HCD)问题提供了新的策略,即从图形信号处理(GSP)的角度解决HCD。我们构造一个图表以表示每个图像的结构,并将每个图像视为图表上定义的图形信号。这样,我们可以将HCD问题转换为图表上定义的系统的信号响应的比较。在第一部分中,通过比较顶点域的图之间的结构差来衡量变化。在本第二部分中,我们分析了来自光谱域的HCD的GSP。我们首先分析同一图上不同图像的光谱特性,并表明它们的光谱表现出共同点和差异。特别是,正是变化导致了光谱的差异。然后,我们提出了HCD的回归模型,该模型将源信号分解为回归信号并更改信号,并且需要回归的信号具有与同一图上的目标信号相同的光谱属性。借助图光谱分析,提出的回归模型是灵活且可扩展的。对七个真实数据集进行的实验显示了该方法的有效性。
translated by 谷歌翻译
本文为异构变化检测(HCD)问题提供了一种新的策略:从图形信号处理(GSP)的角度解决HCD。我们为每个图像构造一个图表以捕获结构信息,并将每个图像视为图形信号。通过这种方式,我们将HCD转换为GSP问题:对两个图上定义的不同系统的响应的比较,试图找到结构性差异(第I部分)和信号差异(第II部分)异质图像之间的变化。在第一部分中,我们用顶点域的GSP分析了HCD。我们首先证明,对于未改变的图像,它们的结构是一致的,然后在两个图上定义的系统上的相同信号的输出相似。但是,一旦区域发生变化,图像的局部结构会发生变化,即包含该区域的顶点的连通性发生变化。然后,我们可以比较通过在两个图上定义的过滤器的相同输入图信号的输出信号以检测更改。我们设计了来自顶点域的不同过滤器,可以灵活地探索原始图中隐藏的高阶邻域信息。我们还从信号传播的角度分析了变化区域对变化检测结果的有害影响。在七个真实数据集上进行的实验显示了基于顶点域滤波的HCD方法的有效性。
translated by 谷歌翻译
In applications such as social, energy, transportation, sensor, and neuronal networks, high-dimensional data naturally reside on the vertices of weighted graphs. The emerging field of signal processing on graphs merges algebraic and spectral graph theoretic concepts with computational harmonic analysis to process such signals on graphs. In this tutorial overview, we outline the main challenges of the area, discuss different ways to define graph spectral domains, which are the analogues to the classical frequency domain, and highlight the importance of incorporating the irregular structures of graph data domains when processing signals on graphs. We then review methods to generalize fundamental operations such as filtering, translation, modulation, dilation, and downsampling to the graph setting, and survey the localized, multiscale transforms that have been proposed to efficiently extract information from high-dimensional data on graphs. We conclude with a brief discussion of open issues and possible extensions.
translated by 谷歌翻译
Research in Graph Signal Processing (GSP) aims to develop tools for processing data defined on irregular graph domains. In this paper we first provide an overview of core ideas in GSP and their connection to conventional digital signal processing, along with a brief historical perspective to highlight how concepts recently developed in GSP build on top of prior research in other areas. We then summarize recent advances in developing basic GSP tools, including methods for sampling, filtering or graph learning. Next, we review progress in several application areas using GSP, including processing and analysis of sensor network data, biological data, and applications to image processing and machine learning.
translated by 谷歌翻译
我们介绍了一种新颖的谐波分析,用于在函数上定义的函数,随机步行操作员是基石。作为第一步,我们将随机步行操作员的一组特征向量作为非正交傅里叶类型的功能,用于通过定向图。我们通过将从其Dirichlet能量获得的随机步行操作员的特征向量的变化与其相关的特征值的真实部分连接来发现频率解释。从这个傅立叶基础,我们可以进一步继续,并在有向图中建立多尺度分析。通过将Coifman和MagGioni扩展到定向图,我们提出了一种冗余小波变换和抽取的小波变换。因此,我们对导向图的谐波分析的发展导致我们考虑应用于突出了我们框架效率的指示图的图形上的半监督学习问题和信号建模问题。
translated by 谷歌翻译
多模式数据通过将来自来自各个域的数据与具有非常不同的统计特性的数据集成来提供自然现象的互补信息。捕获多模式数据的模态和跨换体信息是多模式学习方法的基本能力。几何感知数据分析方法通过基于其几何底层结构隐式表示各种方式的数据来提供这些能力。此外,在许多应用中,在固有的几何结构上明确地定义数据。对非欧几里德域的深度学习方法是一个新兴的研究领域,最近在许多研究中被调查。大多数流行方法都是为单峰数据开发的。本文提出了一种多模式多缩放图小波卷积网络(M-GWCN)作为端到端网络。 M-GWCN同时通过应用多尺度图小波变换来找到模态表示,以在每个模态的图形域中提供有用的本地化属性,以及通过学习各种方式之间的相关性的学习置换的跨模式表示。 M-GWCN不限于具有相同数量的数据的均匀模式,或任何指示模式之间的对应关系的现有知识。已经在三个流行的单峰显式图形数据集和五个多模式隐式界面进行了几个半监督节点分类实验。实验结果表明,与光谱图域卷积神经网络和最先进的多模式方法相比,所提出的方法的优越性和有效性。
translated by 谷歌翻译
在本文中,我们提出了一种设计用于图形域的域适配算法。给定具有许多标记节点的源图和具有少数或没有标记节点的目标图,我们的目标是通过利用两个图表上标签函数的变化的特征之间的相似性来估计目标标签。我们对源和目标域的假设是标签函数的本地行为,例如图表上的速度和变化的变化速度,在两个图形之间存在相似之处。我们通过求解标签信息基于之前的标签函数的投影在源图和目标图之间类似地将标签信息从源图传输到目标图来求解从源图到目标图的优化问题来估计未知的目标标签。为了有效地捕获图形上标签函数的局部变化,光谱图小波用作图形基础。与参考域适配方法相比,各种数据集的实验表明,该方法产生了相当令人满意的分类精度。
translated by 谷歌翻译
随着从现实世界所收集的图形数据仅仅是无噪声,图形的实际表示应该是强大的噪声。现有的研究通常侧重于特征平滑,但留下几何结构不受影响。此外,大多数工作需要L2-Norm,追求全局平滑度,这限制了图形神经网络的表现。本文根据特征和结构噪声裁定图表数据的常规程序,其中目标函数用乘法器(ADMM)的交替方向方法有效地解决。该方案允许采用多个层,而无需过平滑的关注,并且保证对最佳解决方案的收敛性。实证研究证明,即使在重大污染的情况下,我们的模型也与流行的图表卷积相比具有明显更好的性能。
translated by 谷歌翻译
从X射线冠状动脉造影(XCA)图像序列中提取对比度的血管对于直觉诊断和治疗具有重要的临床意义。在这项研究中,XCA图像序列O被认为是三维张量输入,血管层H是稀疏张量,而背景层B是低级别张量。使用张量核标准(TNN)最小化,提出了一种基于张量的强稳定主成分分析(TRPCA)的新型血管层提取方法。此外,考虑了血管的不规则运动和周围无关组织的动态干扰,引入了总变化(TV)正规化时空约束,以分离动态背景E。 - 阶段区域生长(TSRG)方法用于血管增强和分割。全局阈值分割用作获得主分支的预处理,并使用ra样特征(RLF)滤波器来增强和连接破碎的小段,最终的容器掩模是通过结合两个中间结果来构建的。我们评估了TV-TRPCA算法的前景提取的可见性以及TSRG算法在真实临床XCA图像序列和第三方数据库上的血管分割的准确性。定性和定量结果都验证了所提出的方法比现有的最新方法的优越性。
translated by 谷歌翻译
Data-driven neighborhood definitions and graph constructions are often used in machine learning and signal processing applications. k-nearest neighbor~(kNN) and $\epsilon$-neighborhood methods are among the most common methods used for neighborhood selection, due to their computational simplicity. However, the choice of parameters associated with these methods, such as k and $\epsilon$, is still ad hoc. We make two main contributions in this paper. First, we present an alternative view of neighborhood selection, where we show that neighborhood construction is equivalent to a sparse signal approximation problem. Second, we propose an algorithm, non-negative kernel regression~(NNK), for obtaining neighborhoods that lead to better sparse representation. NNK draws similarities to the orthogonal matching pursuit approach to signal representation and possesses desirable geometric and theoretical properties. Experiments demonstrate (i) the robustness of the NNK algorithm for neighborhood and graph construction, (ii) its ability to adapt the number of neighbors to the data properties, and (iii) its superior performance in local neighborhood and graph-based machine learning tasks.
translated by 谷歌翻译
红外小目标检测是红外系统中的重要基本任务。因此,已经提出了许多红外小目标检测方法,其中低级模型已被用作强大的工具。然而,基于低级别的方法为不同的奇异值分配相同的权重,这将导致背景估计不准确。考虑到不同的奇异值具有不同的重要性,并且应判别处理,本文提出了一种用于红外小目标检测的非凸张力低秩近似(NTLA)方法。在我们的方法中,NTLA正则化将不同的权重自适应分配给不同的奇异值以进行准确背景估计。基于所提出的NTLA,我们提出了不对称的空间 - 时间总变化(ASTTV)正则化,以实现复杂场景中的更准确的背景估计。与传统的总变化方法相比,ASTTV利用不同的平滑度强度进行空间和时间正则化。我们设计了一种有效的算法来查找我们方法的最佳解决方案。与一些最先进的方法相比,所提出的方法达到各种评估指标的改进。各种复杂场景的广泛实验结果表明,我们的方法具有强大的鲁棒性和低误报率。代码可在https://github.com/liuting20a/asttv-ntla获得。
translated by 谷歌翻译
我们研究了以模型为简单络合物的抽象拓扑空间支撑的处理信号的线性过滤器,可以解释为解释节点,边缘,三角形面的图形的概括等,以处理此类信号,我们开发了定义为Matrix polynomials的简单卷积过滤器下霍德·拉普拉斯人的下部和上部。首先,我们研究了这些过滤器的特性,并表明它们是线性和转移不变的,以及置换和定向等效的。这些过滤器也可以以低计算复杂性的分布式方式实现,因为它们仅涉及(多个回合)上层和下相邻简单之间的简单转移。其次,着眼于边缘流,我们研究了这些过滤器的频率响应,并研究了如何使用Hodge分类来描述梯度,卷曲和谐波频率。我们讨论了这些频率如何对应于霍德拉普拉斯(Hodge laplacian)的下部和上等耦合以及上的核心,并且可以通过我们的滤波器设计独立调整。第三,我们研究设计简单卷积过滤器并讨论其相对优势的不同程序。最后,我们在几种应用中证实了简单过滤器:提取简单信号的不同频率组件,以denoise边缘流量以及分析金融市场和交通网络。
translated by 谷歌翻译
本文旨在为多尺度帧卷积提供一种新颖的光谱图神经网络设计。在光谱范例中,光谱GNN通过提出频谱域中的各种光谱滤波器来提高图形学习任务性能,以捕获全局和本地图形结构信息。虽然现有的光谱方法在某些图表中显示出卓越的性能,但是当图表信息不完整或扰乱时,它们患有缺乏灵活性并脆弱。我们的新帧卷曲卷积包括直接在光谱域中设计的过滤功能,以克服这些限制。所提出的卷积在切断光谱信息中表现出具有很大的灵活性,并有效地减轻了噪声曲线图信号的负效应。此外,为了利用现实世界图数据中的异质性,具有我们新的帧卷积的异构图形神经网络提供了一种用于将元路径的内在拓扑信息与多级图分析嵌入的解决方案。进行了扩展实验实现了具有嘈杂节点特征和卓越性能结果的设置下的现实异构图和均匀图。
translated by 谷歌翻译
图表信号处理是一种普遍存在的任务,如传感器,社会,运输和大脑网络,点云处理和图形神经网络等许多应用程序。通常,图形信号在感测过程中损坏,从而需要恢复。在本文中,我们提出了一种基于深度算法展开(DAU)的图形信号恢复方法。首先,我们通过展开乘法器(ADMM)的交替方向方法的迭代来呈现曲线图信号置位。然后,我们建议通过展开即插即用ADMM(PNP-ADMM)的迭代进行线性劣化的一般恢复方法。在第二种方法中,将展开的基于ADMM的Denoiser纳入子模块,导致嵌套的DAU结构。所提出的去噪/恢复方法中的参数以端到端的方式进行培训。我们的方法是可解释的,并保持参数的数量,因为我们只调谐与图形的正则化参数。我们克服了现有曲线图信号恢复方法中的两个主要挑战:1)由于固定参数,凸优化算法的有限性能由于通常手动确定的固定参数。 2)图形神经网络的大量参数导致训练难度。对曲线信号去噪和插值的几个实验是对合成和真实世界的数据进行的。所提出的方法在两个任务中的根均方误差方面,在几种现有技术上显示了性能改进。
translated by 谷歌翻译
基于光谱的图形神经网络(SGNNS)在图表表示学习中一直吸引了不断的关注。然而,现有的SGNN是限于实现具有刚性变换的曲线滤波器(例如,曲线图傅立叶或预定义的曲线波小波变换)的限制,并且不能适应驻留在手中的图形和任务上的信号。在本文中,我们提出了一种新颖的图形神经网络,实现了具有自适应图小波的曲线图滤波器。具体地,自适应图表小波通过神经网络参数化提升结构学习,其中开发了基于结构感知的提升操作(即,预测和更新操作)以共同考虑图形结构和节点特征。我们建议基于扩散小波提升以缓解通过分区非二分类图引起的结构信息损失。通过设计,得到了所得小波变换的局部和稀疏性以及提升结构的可扩展性。我们进一步通过在学习的小波中学习稀疏图表表示来引导软阈值滤波操作,从而产生局部,高效和可伸缩的基于小波的图形滤波器。为了确保学习的图形表示不变于节点排列,在网络的输入中采用层以根据其本地拓扑信息重新排序节点。我们在基准引用和生物信息图形数据集中评估节点级和图形级别表示学习任务的所提出的网络。大量实验在准确性,效率和可扩展性方面展示了在现有的SGNN上的所提出的网络的优越性。
translated by 谷歌翻译
Many scientific fields study data with an underlying structure that is a non-Euclidean space. Some examples include social networks in computational social sciences, sensor networks in communications, functional networks in brain imaging, regulatory networks in genetics, and meshed surfaces in computer graphics. In many applications, such geometric data are large and complex (in the case of social networks, on the scale of billions), and are natural targets for machine learning techniques. In particular, we would like to use deep neural networks, which have recently proven to be powerful tools for a broad range of problems from computer vision, natural language processing, and audio analysis. However, these tools have been most successful on data with an underlying Euclidean or grid-like structure, and in cases where the invariances of these structures are built into networks used to model them.Geometric deep learning is an umbrella term for emerging techniques attempting to generalize (structured) deep neural models to non-Euclidean domains such as graphs and manifolds. The purpose of this paper is to overview different examples of geometric deep learning problems and present available solutions, key difficulties, applications, and future research directions in this nascent field.
translated by 谷歌翻译
学习遥感图像的歧管结构对于建模和理解过程是最重要的相关性,以及封装在减少一组信息特征中的高维度,以用于后续分类,回归或解密。歧管学习方法显示出优异的性能来处理高光谱图像(HSI)分析,但除非专门设计,否则它们不能提供明确的嵌入式地图,容易适用于采样超出数据。处理问题的常见假设是高维输入空间和(通常低)潜空间之间的转换是线性的。这是一种特别强烈的假设,特别是当由于数据的众所周知的非线性性质而处理高光谱图像时。为了解决这个问题,提出了一种基于高维模型表示(HDMR)的歧管学习方法,这使得能够将非线性嵌入功能呈现给潜伏空间的采样外部样本。将所提出的方法与其线性对应物一起进行比较,并在代表性齐谱图像的分类精度方面实现了有希望的性能。
translated by 谷歌翻译
图形信号处理(GSP)中的基本前提是,将目标信号的成对(反)相关性作为边缘权重以用于图形过滤。但是,现有的快速图抽样方案仅针对描述正相关的正图设计和测试。在本文中,我们表明,对于具有强固有抗相关的数据集,合适的图既包含正边缘和负边缘。作为响应,我们提出了一种以平衡签名图的概念为中心的线性时间签名的图形采样方法。具体而言,给定的经验协方差数据矩阵$ \ bar {\ bf {c}} $,我们首先学习一个稀疏的逆矩阵(Graph laplacian)$ \ MATHCAL {l} $对应于签名图$ \ Mathcal $ \ Mathcal {G} $ 。我们为平衡签名的图形$ \ Mathcal {g} _b $ - 近似$ \ Mathcal {g} $通过Edge Exge Exgement Exgmentation -As Graph频率组件定义Laplacian $ \ Mathcal {L} _b $的特征向量。接下来,我们选择样品以将低通滤波器重建误差分为两个步骤最小化。我们首先将Laplacian $ \ Mathcal {L} _b $的所有Gershgorin圆盘左端对齐,最小的EigenValue $ \ lambda _ {\ min}(\ Mathcal {l} _b)$通过相似性转换$ \ MATHCAL $ \ MATHCAL} s \ Mathcal {l} _b \ s^{ - 1} $,利用最新的线性代数定理,称为gershgorin disc perfect perfect对齐(GDPA)。然后,我们使用以前的快速gershgorin盘式对齐采样(GDAS)方案对$ \ Mathcal {L} _p $进行采样。实验结果表明,我们签名的图形采样方法在各种数据集上明显优于现有的快速采样方案。
translated by 谷歌翻译
在地球观察的背景下,检测变化是从具有不同特征和模态的传感器获得的多阶段图像进行的。即使限制了光学方式,一旦传感器提供不同的空间和/或频谱分辨率的图像,该任务也已被证明是具有挑战性的。本文提出了一种新颖的无监督变更检测方法,该方法专用于这种所谓的异质光学图像。该方法利用了最新进展,将变更检测问题构成了强大的融合框架。更确切地说,我们表明,事先设计和训练的深层对抗网络可以通过具有相同体系结构的网络轻松地互补,以融合一对多播放图像,以执行更改检测。最终的整体体系结构本身遵循一种对抗性策略,其中融合网络和附加网络被解释为发电机的基本构建块。与最先进的变更检测方法的比较证明了所提出方法的多功能性和有效性。
translated by 谷歌翻译
图表表示学习有许多现实世界应用,从超级分辨率的成像,3D计算机视觉到药物重新扫描,蛋白质分类,社会网络分析。图表数据的足够表示对于图形结构数据的统计或机器学习模型的学习性能至关重要。在本文中,我们提出了一种用于图形数据的新型多尺度表示系统,称为抽取帧的图形数据,其在图表上形成了本地化的紧密框架。抽取的帧系统允许在粗粒链上存储图形数据表示,并在每个比例的多个尺度处处理图形数据,数据存储在子图中。基于此,我们通过建设性数据驱动滤波器组建立用于在多分辨率下分解和重建图数据的抽取G-Framewelet变换。图形帧构建基于基于链的正交基础,支持快速图傅里叶变换。由此,我们为抽取的G-Frameword变换或FGT提供了一种快速算法,该算法具有线性计算复杂度O(n),用于尺寸N的图表。用数值示例验证抽取的帧谱和FGT的理论,用于随机图形。现实世界应用的效果是展示的,包括用于交通网络的多分辨率分析,以及图形分类任务的图形神经网络。
translated by 谷歌翻译