We present graph attention networks (GATs), novel neural network architectures that operate on graph-structured data, leveraging masked self-attentional layers to address the shortcomings of prior methods based on graph convolutions or their approximations. By stacking layers in which nodes are able to attend over their neighborhoods' features, we enable (implicitly) specifying different weights to different nodes in a neighborhood, without requiring any kind of costly matrix operation (such as inversion) or depending on knowing the graph structure upfront. In this way, we address several key challenges of spectral-based graph neural networks simultaneously, and make our model readily applicable to inductive as well as transductive problems. Our GAT models have achieved or matched state-of-theart results across four established transductive and inductive graph benchmarks: the Cora, Citeseer and Pubmed citation network datasets, as well as a proteinprotein interaction dataset (wherein test graphs remain unseen during training).
translated by 谷歌翻译
在过去几年中,人们对代表性学习的图形神经网络(GNN)的兴趣不大。GNN提供了一个一般有效的框架,可以从图形结构化数据中学习。但是,GNN通常仅使用一个非常有限的邻域的信息来避免过度光滑。希望为模型提供更多信息。在这项工作中,我们将个性化Pagerank(PPR)的极限分布纳入图形注意力网络(GATS)中,以反映较大的邻居信息,而无需引入过度光滑。从直觉上讲,基于个性化Pagerank的消息聚合对应于无限的许多邻里聚合层。我们表明,对于四个广泛使用的基准数据集,我们的模型优于各种基线模型。我们的实施已在线公开。
translated by 谷歌翻译
Deep learning has revolutionized many machine learning tasks in recent years, ranging from image classification and video processing to speech recognition and natural language understanding. The data in these tasks are typically represented in the Euclidean space. However, there is an increasing number of applications where data are generated from non-Euclidean domains and are represented as graphs with complex relationships and interdependency between objects. The complexity of graph data has imposed significant challenges on existing machine learning algorithms. Recently, many studies on extending deep learning approaches for graph data have emerged. In this survey, we provide a comprehensive overview of graph neural networks (GNNs) in data mining and machine learning fields. We propose a new taxonomy to divide the state-of-the-art graph neural networks into four categories, namely recurrent graph neural networks, convolutional graph neural networks, graph autoencoders, and spatial-temporal graph neural networks. We further discuss the applications of graph neural networks across various domains and summarize the open source codes, benchmark data sets, and model evaluation of graph neural networks. Finally, we propose potential research directions in this rapidly growing field.
translated by 谷歌翻译
We present Deep Graph Infomax (DGI), a general approach for learning node representations within graph-structured data in an unsupervised manner. DGI relies on maximizing mutual information between patch representations and corresponding high-level summaries of graphs-both derived using established graph convolutional network architectures. The learnt patch representations summarize subgraphs centered around nodes of interest, and can thus be reused for downstream node-wise learning tasks. In contrast to most prior approaches to unsupervised learning with GCNs, DGI does not rely on random walk objectives, and is readily applicable to both transductive and inductive learning setups. We demonstrate competitive performance on a variety of node classification benchmarks, which at times even exceeds the performance of supervised learning.
translated by 谷歌翻译
Graph classification is an important area in both modern research and industry. Multiple applications, especially in chemistry and novel drug discovery, encourage rapid development of machine learning models in this area. To keep up with the pace of new research, proper experimental design, fair evaluation, and independent benchmarks are essential. Design of strong baselines is an indispensable element of such works. In this thesis, we explore multiple approaches to graph classification. We focus on Graph Neural Networks (GNNs), which emerged as a de facto standard deep learning technique for graph representation learning. Classical approaches, such as graph descriptors and molecular fingerprints, are also addressed. We design fair evaluation experimental protocol and choose proper datasets collection. This allows us to perform numerous experiments and rigorously analyze modern approaches. We arrive to many conclusions, which shed new light on performance and quality of novel algorithms. We investigate application of Jumping Knowledge GNN architecture to graph classification, which proves to be an efficient tool for improving base graph neural network architectures. Multiple improvements to baseline models are also proposed and experimentally verified, which constitutes an important contribution to the field of fair model comparison.
translated by 谷歌翻译
图形神经网络(GNN)已成功用于许多涉及图形结构数据的问题,从而实现了最新的性能。 GNN通常采用消息通话方案,其中每个节点都使用置换不变的聚合函数从其邻居中汇总信息。标准良好的选择(例如平均值或总和函数)具有有限的功能,因为它们无法捕获邻居之间的相互作用。在这项工作中,我们使用信息理论框架正式化了这些交互,该框架特别包括协同信息。在此定义的驱动下,我们介绍了图排序注意(山羊)层,这是一种新型的GNN组件,可捕获邻域中的节点之间的相互作用。这是通过通过注意机制学习局部节点顺序并使用复发性神经网络聚合器来处理订购表示的来实现的。这种设计使我们能够利用置换敏感的聚合器,同时维持所提出的山羊层的排列量表。山羊模型展示了其在捕获复杂信息(例如中心中心性和节点的有效大小)中的建模图指标中提高的性能。在实用用例中,通过在几个现实世界节点分类基准中成功证实了其出色的建模能力。
translated by 谷歌翻译
In the last few years, graph neural networks (GNNs) have become the standard toolkit for analyzing and learning from data on graphs. This emerging field has witnessed an extensive growth of promising techniques that have been applied with success to computer science, mathematics, biology, physics and chemistry. But for any successful field to become mainstream and reliable, benchmarks must be developed to quantify progress. This led us in March 2020 to release a benchmark framework that i) comprises of a diverse collection of mathematical and real-world graphs, ii) enables fair model comparison with the same parameter budget to identify key architectures, iii) has an open-source, easy-to-use and reproducible code infrastructure, and iv) is flexible for researchers to experiment with new theoretical ideas. As of December 2022, the GitHub repository has reached 2,000 stars and 380 forks, which demonstrates the utility of the proposed open-source framework through the wide usage by the GNN community. In this paper, we present an updated version of our benchmark with a concise presentation of the aforementioned framework characteristics, an additional medium-sized molecular dataset AQSOL, similar to the popular ZINC, but with a real-world measured chemical target, and discuss how this framework can be leveraged to explore new GNN designs and insights. As a proof of value of our benchmark, we study the case of graph positional encoding (PE) in GNNs, which was introduced with this benchmark and has since spurred interest of exploring more powerful PE for Transformers and GNNs in a robust experimental setting.
translated by 谷歌翻译
Deep learning has been shown to be successful in a number of domains, ranging from acoustics, images, to natural language processing. However, applying deep learning to the ubiquitous graph data is non-trivial because of the unique characteristics of graphs. Recently, substantial research efforts have been devoted to applying deep learning methods to graphs, resulting in beneficial advances in graph analysis techniques. In this survey, we comprehensively review the different types of deep learning methods on graphs. We divide the existing methods into five categories based on their model architectures and training strategies: graph recurrent neural networks, graph convolutional networks, graph autoencoders, graph reinforcement learning, and graph adversarial methods. We then provide a comprehensive overview of these methods in a systematic manner mainly by following their development history. We also analyze the differences and compositions of different methods. Finally, we briefly outline the applications in which they have been used and discuss potential future research directions.
translated by 谷歌翻译
Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.
translated by 谷歌翻译
几何深度学习取得了长足的进步,旨在概括从传统领域到非欧几里得群岛的结构感知神经网络的设计,从而引起图形神经网络(GNN),这些神经网络(GNN)可以应用于形成的图形结构数据,例如社会,例如,网络,生物化学和材料科学。尤其是受欧几里得对应物的启发,尤其是图形卷积网络(GCN)通过提取结构感知功能来成功处理图形数据。但是,当前的GNN模型通常受到各种现象的限制,这些现象限制了其表达能力和推广到更复杂的图形数据集的能力。大多数模型基本上依赖于通过本地平均操作对图形信号的低通滤波,从而导致过度平滑。此外,为了避免严重的过度厚度,大多数流行的GCN式网络往往是较浅的,并且具有狭窄的接收场,导致侵犯。在这里,我们提出了一个混合GNN框架,该框架将传统的GCN过滤器与通过几何散射定义的带通滤波器相结合。我们进一步介绍了一个注意框架,该框架允许该模型在节点级别上从不同过滤器的组合信息进行本地参与。我们的理论结果确定了散射过滤器的互补益处,以利用图表中的结构信息,而我们的实验显示了我们方法对各种学习任务的好处。
translated by 谷歌翻译
Recent deep learning approaches for representation learning on graphs follow a neighborhood aggregation procedure. We analyze some important properties of these models, and propose a strategy to overcome those. In particular, the range of "neighboring" nodes that a node's representation draws from strongly depends on the graph structure, analogous to the spread of a random walk. To adapt to local neighborhood properties and tasks, we explore an architecture -jumping knowledge (JK) networks -that flexibly leverages, for each node, different neighborhood ranges to enable better structure-aware representation. In a number of experiments on social, bioinformatics and citation networks, we demonstrate that our model achieves state-of-the-art performance. Furthermore, combining the JK framework with models like Graph Convolutional Networks, GraphSAGE and Graph Attention Networks consistently improves those models' performance.
translated by 谷歌翻译
大量越来越复杂的网络威胁是吸引了对网络安全的关注,许多挑战仍未得到解决。即,对于入侵检测,需要更强大,有效,能够使用更多信息的新算法。此外,入侵检测任务面临着与正常和恶意流量之间的极端类别不平衡相关的严重挑战。最近,图形 - 神经网络(GNN)实现了最先进的性能,以在网络安全任务中模拟网络拓扑。但是,使用GNN只有少数作品来解决入侵检测问题。此外,还探索了其他有前途的途径,例如应用注意机制。本文介绍了两种基于图形的入侵检测解决方案,改进的电子图形和电子ResgAtthorithms分别依赖于已建立的Graphsage和Cablent Network网络(GAT)。关键的想法是将剩余学习集成到利用可用图信息的GNN中。剩余连接作为处理高级不平衡的策略,旨在保留原始信息并提高少数群体课程的表现。最近四个入侵检测数据集的广泛实验评估显示了我们方法的优异性能,特别是在预测少数阶级时。
translated by 谷歌翻译
Pre-publication draft of a book to be published byMorgan & Claypool publishers. Unedited version released with permission. All relevant copyrights held by the author and publisher extend to this pre-publication draft.
translated by 谷歌翻译
自我监督的学习提供了一个有希望的途径,消除了在图形上的代表学习中的昂贵标签信息的需求。然而,为了实现最先进的性能,方法通常需要大量的负例,并依赖于复杂的增强。这可能是昂贵的,特别是对于大图。为了解决这些挑战,我们介绍了引导的图形潜伏(BGRL) - 通过预测输入的替代增强来学习图表表示学习方法。 BGRL仅使用简单的增强,并减轻了对否定例子对比的需求,因此通过设计可扩展。 BGRL胜过或匹配现有的几种建立的基准,同时降低了内存成本的2-10倍。此外,我们表明,BGR1可以缩放到半监督方案中的数亿个节点的极大的图表 - 实现最先进的性能并改善监督基线,其中表示仅通过标签信息而塑造。特别是,我们的解决方案以BGRL为中心,将kdd杯2021的开放图基准的大规模挑战组成了一个获奖条目,在比所有先前可用的基准更大的级别的图形订单上,从而展示了我们方法的可扩展性和有效性。
translated by 谷歌翻译
Low-dimensional embeddings of nodes in large graphs have proved extremely useful in a variety of prediction tasks, from content recommendation to identifying protein functions. However, most existing approaches require that all nodes in the graph are present during training of the embeddings; these previous approaches are inherently transductive and do not naturally generalize to unseen nodes. Here we present GraphSAGE, a general inductive framework that leverages node feature information (e.g., text attributes) to efficiently generate node embeddings for previously unseen data. Instead of training individual embeddings for each node, we learn a function that generates embeddings by sampling and aggregating features from a node's local neighborhood. Our algorithm outperforms strong baselines on three inductive node-classification benchmarks: we classify the category of unseen nodes in evolving information graphs based on citation and Reddit post data, and we show that our algorithm generalizes to completely unseen graphs using a multi-graph dataset of protein-protein interactions. * The two first authors made equal contributions. 1 While it is common to refer to these data structures as social or biological networks, we use the term graph to avoid ambiguity with neural network terminology.
translated by 谷歌翻译
Graph neural network, as a powerful graph representation technique based on deep learning, has shown superior performance and attracted considerable research interest. However, it has not been fully considered in graph neural network for heterogeneous graph which contains different types of nodes and links. The heterogeneity and rich semantic information bring great challenges for designing a graph neural network for heterogeneous graph. Recently, one of the most exciting advancements in deep learning is the attention mechanism, whose great potential has been well demonstrated in various areas. In this paper, we first propose a novel heterogeneous graph neural network based on the hierarchical attention, including node-level and semantic-level attentions. Specifically, the node-level attention aims to learn the importance between a node and its metapath based neighbors, while the semantic-level attention is able to learn the importance of different meta-paths. With the learned importance from both node-level and semantic-level attention, the importance of node and meta-path can be fully considered. Then the proposed model can generate node embedding by aggregating features from meta-path based neighbors in a hierarchical manner. Extensive experimental results on three real-world heterogeneous graphs not only show the superior performance of our proposed model over the state-of-the-arts, but also demonstrate its potentially good interpretability for graph analysis.
translated by 谷歌翻译
Graph convolutional networks (GCNs) are a powerful deep learning approach for graph-structured data. Recently, GCNs and subsequent variants have shown superior performance in various application areas on real-world datasets. Despite their success, most of the current GCN models are shallow, due to the over-smoothing problem.In this paper, we study the problem of designing and analyzing deep graph convolutional networks. We propose the GCNII, an extension of the vanilla GCN model with two simple yet effective techniques: Initial residual and Identity mapping. We provide theoretical and empirical evidence that the two techniques effectively relieves the problem of over-smoothing. Our experiments show that the deep GCNII model outperforms the state-of-the-art methods on various semi-and fullsupervised tasks. Code is available at https: //github.com/chennnM/GCNII.
translated by 谷歌翻译
图表可以模拟实体之间的复杂交互,它在许多重要的应用程序中自然出现。这些应用程序通常可以投入到标准图形学习任务中,其中关键步骤是学习低维图表示。图形神经网络(GNN)目前是嵌入方法中最受欢迎的模型。然而,邻域聚合范例中的标准GNN患有区分\ EMPH {高阶}图形结构的有限辨别力,而不是\ EMPH {低位}结构。为了捕获高阶结构,研究人员求助于主题和开发的基于主题的GNN。然而,现有的基于主基的GNN仍然仍然遭受较少的辨别力的高阶结构。为了克服上述局限性,我们提出了一个新颖的框架,以更好地捕获高阶结构的新框架,铰接于我们所提出的主题冗余最小化操作员和注射主题组合的新颖框架。首先,MGNN生成一组节点表示W.R.T.每个主题。下一阶段是我们在图案中提出的冗余最小化,该主题在彼此相互比较并蒸馏出每个主题的特征。最后,MGNN通过组合来自不同图案的多个表示来执行节点表示的更新。特别地,为了增强鉴别的功率,MGNN利用重新注射功能来组合表示的函数w.r.t.不同的主题。我们进一步表明,我们的拟议体系结构增加了GNN的表现力,具有理论分析。我们展示了MGNN在节点分类和图形分类任务上的七个公共基准上表现出最先进的方法。
translated by 谷歌翻译
近年来,图表表示学习越来越多地引起了越来越长的关注,特别是为了在节点和图表水平上学习对分类和建议任务的低维嵌入。为了能够在现实世界中的大规模图形数据上学习表示,许多研究专注于开发不同的抽样策略,以方便培训过程。这里,我们提出了一种自适应图策略驱动的采样模型(GPS),其中通过自适应相关计算实现了本地邻域中每个节点的影响。具体地,邻居的选择是由自适应策略算法指导的,直接贡献到消息聚合,节点嵌入更新和图级读出步骤。然后,我们从各种角度对图表分类任务进行全面的实验。我们所提出的模型在几个重要的基准测试中优于现有的3%-8%,实现了现实世界数据集的最先进的性能。
translated by 谷歌翻译
在本文中,我们提出了联合关注(CAS),一类新颖的学习与参加图形神经网络(GNN)的策略。除了考虑GNN内传播的层面节点特征,CAS可以另外包含各种结构干预,例如节点集群嵌入,以及在计算注意力分数时可以在GNN之外学习的高阶结构相关性。因此,由联合标准视为重要的节点特征,因此更可能在GNN中传播。鉴于新颖的联合注意力策略,我们提出了可以学习嵌入嵌入的表示的表演的图表关注网络(CAT),这些网络嵌入具有与联合关注所认为的显着潜在的特征。此外,我们理论上验证了猫的辨别能力。利用所提出的联合注意力策略的猫已经在建立了完善的基准数据集中广泛测试,并与最先进的基线进行了全面的基础测试。所获得的显着性能证明了所提出的联合关注的有效性。
translated by 谷歌翻译