准确和高效的点云注册是一个挑战,因为噪音和大量积分影响了对应搜索。这一挑战仍然是一个剩余的研究问题,因为大多数现有方法都依赖于对应搜索。为了解决这一挑战,我们通过调查深生成的神经网络来点云注册来提出新的数据驱动登记算法。给定两个点云,动机是直接生成对齐的点云,这在许多应用中非常有用,如3D匹配和搜索。我们设计了一个端到端的生成神经网络,用于对齐点云生成以实现这种动机,包含三种新组件。首先,提出了一种点多感知层(MLP)混频器(PointMixer)网络以便在自点云中有效地维护全局和局部结构信息。其次,提出了一种特征交互模块来融合来自交叉点云的信息。第三,提出了一种并行和差分样本共识方法来基于所生成的登记结果计算输入点云的变换矩阵。所提出的生成神经网络通过维持数据分布和结构相似度,在GAN框架中训练。 ModelNet40和7Scene数据集的实验表明,所提出的算法实现了最先进的准确性和效率。值得注意的是,与基于最先进的对应的算法相比,我们的方法减少了注册错误(CD)的$ 2 \次数为$ 12 \倍运行时间。
translated by 谷歌翻译
3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance. The code is available at: \href{https://github.com/fukexue/RGM}{https://github.com/fukexue/RGM}.
translated by 谷歌翻译
由于激光雷达扫描数据的大规模,噪音和数据不完整,注册Urban Point Clouds是一项艰巨的任务。在本文中,我们提出了SARNET,这是一个新型的语义增强注册网络,旨在在城市规模上实现有效的城市点云的注册。与以前仅在点级空间中构建对应关系的方法不同,我们的方法完全利用语义特征来提高注册精度。具体而言,我们提取具有高级语义分割网络的每点语义标签,并构建先前的语义零件到部分对应关系。然后,我们将语义信息纳入基于学习的注册管道中,该管道由三个核心模块组成:基于语义的最远点采样模块,以有效地滤除异常值和动态对象;一个语义增强的特征提取模块,用于学习更多的判别点描述符;语义改制的转换估计模块,该模块利用先前的语义匹配作为掩码,通过减少错误匹配以更好地收敛来完善点对应关系。我们通过使用来自城市场景的大区域的现实世界数据并将其与替代方法进行比较,从而广泛评估所提出的SARNET。该代码可在https://github.com/wintercodeforeverything/sarnet上找到。
translated by 谷歌翻译
如何提取重要点云特征并估计它们之间的姿势仍然是一个具有挑战性的问题,因为点云的固有缺乏结构和暧昧的顺序排列。尽管对大多数3D计算机视觉任务的基于深度学习的方法进行了重大改进,例如对象分类,对象分割和点云注册,但功能之间的一致性在现有的基于学习的流水线上仍然没有吸引力。在本文中,我们提出了一种用于复杂对准场景的新型学习的对齐网络,标题为深度特征一致性,并由三个主模块组成:多尺度图形特征合并网络,用于将几何对应集转换为高维特征,对应加权用于构建多个候选内部子集的模块,以及命名为深度特征匹配的Procrustes方法,用于给出闭合方案来估计相对姿势。作为深度特征匹配模块的最重要步骤,构造每个Inlier子集的特征一致性矩阵以获得其主要向量作为相应子集的含义似然性。我们全面地验证了我们在3DMATCH数据集和基提ODOMOTRY数据集中的方法的鲁棒性和有效性。对于大型室内场景,3DMATCH数据集上的注册结果表明,我们的方法优于最先进的传统和基于学习的方法。对于Kitti户外场景,我们的方法仍然能够降低转换错误。我们还在交叉数据集中探讨其强大的泛化能力。
translated by 谷歌翻译
现有的最先进的点描述符仅依赖于结构信息,从而省略纹理信息。然而,纹理信息对于我们的人类来区分场景部分至关重要。此外,基于学习的点描述符是尚不清楚原始点如何贡献到最终描述符的黑框。在本文中,我们提出了一种新的多模式融合方法,通过考虑结构和纹理信息来生成点云注册描述符。具体地,设计一种新的关注融合模块,用于提取描述符提取的加权纹理信息。此外,我们提出了一个可解释的模块来解释有助于最终描述符的原始点。我们使用描述符元素作为对目标层的丢失丢失,并将梯度视为对最终描述符的这一点的重要性。本文进一步移动了一步,以解释注册任务中的深度学习。 3DMATCH,3DLomatch和Kitti的综合实验表明,多模式融合描述符实现最先进的准确性并提高描述符的独特性。我们还表明我们的可解释模块在解释注册描述符提取时。
translated by 谷歌翻译
最近的3D注册方法可以有效处理大规模或部分重叠的点对。然而,尽管具有实用性,但在空间尺度和密度方面与不平衡对匹配。我们提出了一种新颖的3D注册方法,称为uppnet,用于不平衡点对。我们提出了一个层次结构框架,通过逐渐减少搜索空间,可以有效地找到近距离的对应关系。我们的方法预测目标点的子区域可能与查询点重叠。以下超点匹配模块和细粒度的细化模块估计两个点云之间的准确对应关系。此外,我们应用几何约束来完善满足空间兼容性的对应关系。对应性预测是对端到端训练的,我们的方法可以通过单个前向通行率预测适当的刚体转换,并给定点云对。为了验证提出方法的疗效,我们通过增强Kitti LiDAR数据集创建Kitti-UPP数据集。该数据集的实验表明,所提出的方法显着优于最先进的成对点云注册方法,而当目标点云大约为10 $ \ times $ higation时,注册召回率的提高了78%。比查询点云大约比查询点云更密集。
translated by 谷歌翻译
高信心重叠的预测和准确的对应关系对于以部分到派对方式对齐成对点云至关重要。但是,重叠区域和非重叠区域之间存在固有的不确定性,这些区域一直被忽略并显着影响注册绩效。除了当前的智慧之外,我们提出了一种新颖的不确定性意识到的重叠预测网络,称为Utopic,以解决模棱两可的重叠预测问题。据我们所知,这是第一个明确引入重叠不确定性以指向云注册的人。此外,我们诱导特征提取器通过完成解码器隐式感知形状知识,并为变压器提供几何关系嵌入,以获得转换 - 不变性的几何形状感知特征表示。凭借更可靠的重叠得分和更精确的密度对应关系的优点,即使对于有限的重叠区域的输入,乌托邦也可以实现稳定而准确的注册结果。关于合成和实际基准的广泛定量和定性实验证明了我们的方法优于最先进的方法。代码可从https://github.com/zhileichen99/utopic获得。
translated by 谷歌翻译
点云注册是许多任务的基本步骤。在本文中,我们提出了一个名为detarnet的神经网络,将$ t $和旋转降序,以克服Point云注册的相互干扰导致的性能下降。首先,提出了一种基于暹罗网络的渐进和相干特征漂移(PCFD)模块以对准高维特征空间中的源点和目标点,并准确地从对准过程恢复转换。然后,我们提出了一种共识编码单元(CEU),以构建一组推定的对应关系的更区别特征。之后,采用空间和信道注意力(SCA)块来构建用于寻找良好通信的分类网络。最后,通过奇异值分解(SVD)获得旋转。以这种方式,所提出的网络对翻译和旋转的估计进行了解耦,导致它们两个的更好的性能。实验结果表明,拟议的Detarnet在室内和室外场景中提高了登记性能。我们的代码将在\ url {https://github.com/zhichen902/detarnet}中获得。
translated by 谷歌翻译
部分重叠点云的实时登记具有对自治车辆和多助手SLAM的合作看法的新兴应用。这些应用中点云之间的相对转换高于传统的SLAM和OCOMOTRY应用程序,这挑战了对应的识别和成功的注册。在本文中,我们提出了一种用于部分重叠点云的新颖注册方法,其中使用有效的点亮特征编码器学习对应关系,并使用基于图形的注意网络改进。这种注意网络利用关键点之间的几何关系,以改善点云中的匹配,低重叠。在推断时间下,通过通过样本共识稳健地拟合对应关系来获得相对姿态变换。在基蒂数据集和新的合成数据集上进行评估,包括低重叠点云,位移高达30米。所提出的方法在Kitti DataSet上使用最先进的方法实现了对映射性能,并且优于低重叠点云的现有方法。此外,所提出的方法可以比竞争方法更快地实现更快的推理时间,低至410ms,低至410ms。我们的代码和数据集可在https://github.com/eduardohenriquearnold/fastreg提供。
translated by 谷歌翻译
配对点云之间的低空区域使被捕获的特征非常自信,导致尖端模型以质量较差的云登记。除了传统的智慧之外,我们还提出了一个有趣的问题:是否有可能在两个低重叠点云之间利用中间却又错位的图像来增强尖端注册模型的性能?为了回答它,我们提出了一个被称为Imlovenet的低重叠点云对的未对准图像支持的注册网络。 Imlovenet首先学习跨不同模态的三重深特征,然后将这些特征导出到两个阶段分类器中,以逐步获得两个点云之间的高信心重叠区域。因此,软对应关系在预测的重叠区域中得到了很好的确定,从而导致了准确的刚性转换。 Imlovenet易于实现,但有效,因为1)未对准的图像为两个低重叠点云提供了更清晰的重叠信息,以更好地定位重叠零件; 2)它包含某些几何知识,以提取更好的深度特征; 3)它不需要成像设备的外部参数,相对于3D点云的参考框架。对各种基准的广泛定性和定量评估证明了我们的iMlovenet比最新方法的有效性和优越性。
translated by 谷歌翻译
在这项工作中,我们解决了从点云数据估算对象的6D姿势的任务。尽管最近基于学习的方法解决此任务的方法在合成数据集上表现出了很大的成功,但我们观察到它们在存在现实世界数据的情况下失败了。因此,我们分析了这些故障的原因,我们将其追溯到源云和目标点云的特征分布之间的差,以及广泛使用的SVD损耗函数对两个点之间旋转范围的敏感性云。我们通过基于点对应的负模可能性引入损失函数来解决新的归一化策略,匹配归一化以及第二个挑战。我们的两个贡献是一般的,可以应用于许多现有的基于学习的3D对象注册框架,我们通过在其中两个DCP和IDAM中实现它们来说明它们。我们对现实的TUD-L,LineMod和canluded-LineMod数据集的实验证明了我们策略的好处。它们允许首次基于学习的3D对象注册方法在现实世界中获得有意义的结果。因此,我们希望它们是点云注册方法未来开发的关键。
translated by 谷歌翻译
最近的基于变压器的方法通过利用变压器的优势在秩序 - 不变性和建模依赖性依赖于聚合信息来实现高级云注册的高级性能。然而,它们仍然遭受模糊的特征提取,对噪音和异常值的敏感性。原因是:(1)采用CNNS由于其本地接受领域而无法模拟全球关系,导致易受噪声的提取特征; (2)变压器的浅宽度和位置编码缺乏由于效率低下的信息相互作用导致模糊的特征提取; (3)遗漏几何兼容性导致入世与异常值之间的分类不准确。为了满足以上限制,提出了一种用于点云注册的新型变压器网络,命名为深度交互式变换器(DIT),它包含:(1)点云结构提取器(PSE)来模拟全球关系,并通过变压器检索结构信息编码器; (2)深窄点特征变压器(PFT),以便于与位置编码的两个点云相互作用,使得变压器可以建立综合关联,直接学习点之间的相对位置; (3)基于几何匹配的对应置信置信度评估(GMCCE)方法来测量空间一致性,并通过设计三角形描述符来估计inlier置信度。在清洁,嘈杂,部分重叠点云注册的广泛实验表明我们的方法优于最先进的方法。
translated by 谷歌翻译
本文提出了一种可对应的点云旋转登记的方法。我们学习为每个点云嵌入保留所以(3)-equivariance属性的特征空间中的嵌入,通过最近的Quifariant神经网络的开发启用。所提出的形状登记方法通过用隐含形状模型结合等分性的特征学习来实现三个主要优点。首先,由于网络架构中类似于PointNet的网络体系结构中的置换不变性,因此删除了数据关联的必要性。其次,由于SO(3)的性能,可以使用喇叭的方法以闭合形式来解决特征空间中的注册。第三,由于注册和隐含形状重建的联合培训,注册对点云中的噪声强大。实验结果显示出优异的性能与现有的无对应的深层登记方法相比。
translated by 谷歌翻译
生成一组高质量的对应关系或匹配是点云注册中最关键的步骤之一。本文通过共同考虑点对立的结构匹配来提出学习框架COTREG,以预测3D点云登记的对应关系。具体地,我们将这两个匹配转换为基于Wasserstein距离和基于Gromov-Wasserstein距离的优化。因此,建立对应关系的任务可以自然地重塑成耦合的最佳运输问题。此外,我们设计一个网络,以预测点云的每个点的置信度,其提供重叠区域信息以产生对应关系。我们的对应预测管道可以很容易地集成到基于学习的特征,如FCGF或FPFH等传统描述符。我们在3DMATCH,KITTI,3DCSR和ModelNet40基准上进行了全面的实验,显示了所提出的方法的最先进的性能。
translated by 谷歌翻译
由直觉的激励,即在相应的3D点云中定位2D图像的关键步骤正在建立它们之间的2d-3d对应关系,我们提出了第一个基于特征的密度通信框架,以解决图像到点云注册问题,称为Corri2p,由三个模块组成,即特征嵌入,对称重叠区域检测和通过已建立的对应关系构成估计。具体而言,给定一对2D图像和3D点云,我们首先将它们转换为高维特征空间,并将结果特征馈入对称重叠区域检测器,以确定图像和点云相互重叠的区域。然后,我们使用重叠区域的功能在RANSAC内运行EPNP之前以估算相机的姿势,以建立2D-3D对应关系。 Kitti和Nuscenes数据集的实验结果表明,我们的Corri2p优于最先进的图像到点云注册方法。我们将公开提供代码。
translated by 谷歌翻译
自主导航的同时本地化和映射(SLAM)框架依赖于强大的数据关联来识别循环封闭以进行后端轨迹优化。对于配备了多层回声器(MBE)的自动水下车辆(AUV),由于海床中可识别的地标的稀缺性,数据关联尤其具有挑战性MBE数据的低分辨率特征。循环封闭检测的深度学习解决方案已显示出来自更结构化环境的数据的出色性能。但是,它们转移到海底领域并不是直接的,并且由于缺乏测深的数据集而阻碍了移植它们的努力。因此,在本文中,我们提出了一种神经网络体系结构,旨在展示将这种技术适应测深数据中对应匹配的潜力。我们从AUV任务中训练我们的框架,并评估其在循环闭合检测任务和粗点云对齐任务上的性能。最后,我们在更传统的方法上展示了其潜力,并释放其实现和所使用的数据集。
translated by 谷歌翻译
通信搜索是刚性点云注册算法中的重要步骤。大多数方法在每个步骤都保持单个对应关系,并逐渐删除错误的通信。但是,建立一对一的对应关系非常困难,尤其是当将两个点云与许多本地功能匹配时。本文提出了一种优化方法,该方法在将部分点云与完整点云匹配时保留每个关键点的所有可能对应关系。然后,通过考虑匹配成本,这些不确定的对应关系通过估计的刚性转换逐渐更新。此外,我们提出了一个新的点功能描述符,该描述符衡量本地点云区域之间的相似性。广泛的实验表明,即使在同一类别中与不同对象匹配时,我们的方法也优于最先进的方法(SOTA)方法。值得注意的是,我们的方法在将真实世界的噪声深度图像注册为模板形状时的表现优于SOTA方法。
translated by 谷歌翻译
点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译
功能配准算法表示点云为函数(例如,空间占用场),避免了常规最小二乘Quares注册算法中不可靠的对应估计。但是,现有的功能注册算法在计算上很昂贵。此外,在基于CAD模型的对象本地化等任务中,必须使用未知量表的注册能力,但是功能注册中没有这种支持。在这项工作中,我们提出了一种比例不变的线性时间复杂性功能配准算法。我们通过使用正顺序基函数在功能之间的L2距离之间有效地近似实现线性时间复杂性。正统基函数的使用导致与最小二乘配准兼容的公式。受益于最小二乘的公式,我们使用翻译反转不变测量的理论来解除尺度估计,从而实现规模不变的注册。我们在标准的3D注册基准上评估了所提出的算法,称为FLS(功能最小二乘),显示FLS的数量级比最先进的功能配准算法快,而无需损害准确性和鲁棒性。 FLS还胜过基于最小二乘的最小二乘注册算法,其精度和鲁棒性具有已知和未知量表。最后,我们证明将FLS应用于具有不同密度和部分重叠的寄存点云,同一类别中不同对象的点云以及带有嘈杂RGB-D测量值的真实世界对象的点云。
translated by 谷歌翻译
您将如何通过一些错过来修复物理物体?您可能会想象它的原始形状从先前捕获的图像中,首先恢复其整体(全局)但粗大的形状,然后完善其本地细节。我们有动力模仿物理维修程序以解决点云完成。为此,我们提出了一个跨模式的形状转移双转化网络(称为CSDN),这是一种带有全循环参与图像的粗到精细范式,以完成优质的点云完成。 CSDN主要由“ Shape Fusion”和“ Dual-Refinect”模块组成,以应对跨模式挑战。第一个模块将固有的形状特性从单个图像传输,以指导点云缺失区域的几何形状生成,在其中,我们建议iPadain嵌入图像的全局特征和部分点云的完成。第二个模块通过调整生成点的位置来完善粗糙输出,其中本地改进单元通过图卷积利用了小说和输入点之间的几何关系,而全局约束单元则利用输入图像来微调生成的偏移。与大多数现有方法不同,CSDN不仅探讨了图像中的互补信息,而且还可以在整个粗到精细的完成过程中有效利用跨模式数据。实验结果表明,CSDN对十个跨模式基准的竞争对手表现出色。
translated by 谷歌翻译