自主导航的同时本地化和映射(SLAM)框架依赖于强大的数据关联来识别循环封闭以进行后端轨迹优化。对于配备了多层回声器(MBE)的自动水下车辆(AUV),由于海床中可识别的地标的稀缺性,数据关联尤其具有挑战性MBE数据的低分辨率特征。循环封闭检测的深度学习解决方案已显示出来自更结构化环境的数据的出色性能。但是,它们转移到海底领域并不是直接的,并且由于缺乏测深的数据集而阻碍了移植它们的努力。因此,在本文中,我们提出了一种神经网络体系结构,旨在展示将这种技术适应测深数据中对应匹配的潜力。我们从AUV任务中训练我们的框架,并评估其在循环闭合检测任务和粗点云对齐任务上的性能。最后,我们在更传统的方法上展示了其潜力,并释放其实现和所使用的数据集。
translated by 谷歌翻译
基于图形的大量系统的关键组成部分是能够检测轨迹中的环闭合以减少从探视法累积的漂移。大多数基于激光雷达的方法仅通过仅使用几何信息来实现此目标,而无视场景的语义。在这项工作中,我们介绍了Padloc,这是一种基于激光雷达的环路闭合检测和注册体系结构,其中包括共享的3D卷积特征提取主链,用于环路闭合检测的全局描述符,以及用于点云匹配和注册的新型变压器头。我们提出了多种方法,用于估计基于多样性指数的点匹配置信度。此外,为了提高前向后的一致性,我们建议使用两个共享匹配和注册头,并通过利用估计的相对转换必须相互倒数来交换其源和目标输入。此外,我们以新颖的损失函数的形式利用综合信息在培训期间,将匹配问题折叠为语义标签的分类任务,并作为实例标签的图形连接分配。我们在多个现实世界数据集上对PADLOC进行了广泛的评估,证明它可以实现最新的性能。我们的工作代码可在http://padloc.cs.uni-freiburg.de上公开获得。
translated by 谷歌翻译
最近的高精度亚次光学光学扫描仪的开发允许将3D键盘检测器和功能描述符在海底环境中的点云扫描上利用。但是,文献缺乏一项全面的调查,无法确定在这些挑战和新颖的环境中使用的检测器和描述符的最佳组合。本文旨在使用使用商业水下激光扫描仪收集的具有挑战性的现场数据集确定最佳的检测器/描述符对。此外,研究表明,合并纹理信息扩展几何特征为合成数据集的特征匹配增添了鲁棒性。本文还提出了一种与水下激光扫描融合图像以产生有色点云的新方法,该方法用于研究6D点云描述符的有效性。
translated by 谷歌翻译
点云注册是许多应用程序(例如本地化,映射,跟踪和重建)的基本任务。成功的注册依赖于提取鲁棒和歧视性的几何特征。现有的基于学习的方法需要高计算能力来同时处理大量原始点。尽管这些方法取得了令人信服的结果,但由于高计算成本,它们很难在现实情况下应用。在本文中,我们介绍了一个框架,该框架使用图形注意网络有效地从经济上提取密集的特征,以进行点云匹配和注册(DFGAT)。 DFGAT的检测器负责在大型原始数据集中找到高度可靠的关键点。 DFGAT的描述符将这些关键点与邻居相结合,以提取不变的密度特征,以准备匹配。图形注意力网络使用了丰富点云之间关系的注意机制。最后,我们将其视为最佳运输问题,并使用Sinkhorn算法找到正匹配和负面匹配。我们对KITTI数据集进行了彻底的测试,并评估了该方法的有效性。结果表明,与其他最先进的方法相比,使用有效紧凑的关键点选择和描述可以实现最佳性能匹配指标,并达到99.88%注册的最高成功率。
translated by 谷歌翻译
循环闭合检测是同时定位和映射(SLAM)系统的重要组成部分,这减少了随时间累积的漂移。多年来,已经提出了一些深入的学习方法来解决这项任务,但是与手工制作技术相比,他们的表现一直是SubPar,特别是在处理反向环的同时。在本文中,我们通过同时识别先前访问的位置并估计当前扫描与地图之间的6-DOF相对变换,有效地检测LIDAR点云中的LINAS点云中的环闭环的新颖LCDNET。 LCDNET由共享编码器组成,一个地方识别头提取全局描述符,以及估计两个点云之间的变换的相对姿势头。我们基于不平衡的最佳运输理论介绍一种新颖的相对姿势,我们以可分散的方式实现,以便实现端到端训练。在多个现实世界自主驾驶数据集中的LCDNET广泛评估表明我们的方法优于最先进的环路闭合检测和点云登记技术,特别是在处理反向环的同时。此外,我们将所提出的循环闭合检测方法集成到LIDAR SLAM库中,以提供完整的映射系统,并在看不见的城市中使用不同的传感器设置展示泛化能力。
translated by 谷歌翻译
由于激光雷达扫描数据的大规模,噪音和数据不完整,注册Urban Point Clouds是一项艰巨的任务。在本文中,我们提出了SARNET,这是一个新型的语义增强注册网络,旨在在城市规模上实现有效的城市点云的注册。与以前仅在点级空间中构建对应关系的方法不同,我们的方法完全利用语义特征来提高注册精度。具体而言,我们提取具有高级语义分割网络的每点语义标签,并构建先前的语义零件到部分对应关系。然后,我们将语义信息纳入基于学习的注册管道中,该管道由三个核心模块组成:基于语义的最远点采样模块,以有效地滤除异常值和动态对象;一个语义增强的特征提取模块,用于学习更多的判别点描述符;语义改制的转换估计模块,该模块利用先前的语义匹配作为掩码,通过减少错误匹配以更好地收敛来完善点对应关系。我们通过使用来自城市场景的大区域的现实世界数据并将其与替代方法进行比较,从而广泛评估所提出的SARNET。该代码可在https://github.com/wintercodeforeverything/sarnet上找到。
translated by 谷歌翻译
我们介绍了一种简单而有效的方法,可以使用本地3D深度描述符(L3DS)同时定位和映射解决循环闭合检测。 L3DS正在采用深度学习算法从数据从数据中学到的点云提取的斑块的紧凑型表示。通过在通过其估计的相对姿势向循环候选点云登记之后计算对应于相互最近邻接描述符的点之间的度量误差,提出了一种用于循环检测的新颖重叠度量。这种新方法使我们能够在小重叠的情况下精确地检测环并估计六个自由度。我们将基于L3D的循环闭合方法与最近的LIDAR数据的方法进行比较,实现最先进的环路闭合检测精度。此外,我们嵌入了我们在最近的基于边缘的SLAM系统中的循环闭合方法,并对现实世界RGBD-TUM和合成ICL数据集进行了评估。与其原始环路闭合策略相比,我们的方法能够实现更好的本地化准确性。
translated by 谷歌翻译
最近的3D注册方法可以有效处理大规模或部分重叠的点对。然而,尽管具有实用性,但在空间尺度和密度方面与不平衡对匹配。我们提出了一种新颖的3D注册方法,称为uppnet,用于不平衡点对。我们提出了一个层次结构框架,通过逐渐减少搜索空间,可以有效地找到近距离的对应关系。我们的方法预测目标点的子区域可能与查询点重叠。以下超点匹配模块和细粒度的细化模块估计两个点云之间的准确对应关系。此外,我们应用几何约束来完善满足空间兼容性的对应关系。对应性预测是对端到端训练的,我们的方法可以通过单个前向通行率预测适当的刚体转换,并给定点云对。为了验证提出方法的疗效,我们通过增强Kitti LiDAR数据集创建Kitti-UPP数据集。该数据集的实验表明,所提出的方法显着优于最先进的成对点云注册方法,而当目标点云大约为10 $ \ times $ higation时,注册召回率的提高了78%。比查询点云大约比查询点云更密集。
translated by 谷歌翻译
准确和高效的点云注册是一个挑战,因为噪音和大量积分影响了对应搜索。这一挑战仍然是一个剩余的研究问题,因为大多数现有方法都依赖于对应搜索。为了解决这一挑战,我们通过调查深生成的神经网络来点云注册来提出新的数据驱动登记算法。给定两个点云,动机是直接生成对齐的点云,这在许多应用中非常有用,如3D匹配和搜索。我们设计了一个端到端的生成神经网络,用于对齐点云生成以实现这种动机,包含三种新组件。首先,提出了一种点多感知层(MLP)混频器(PointMixer)网络以便在自点云中有效地维护全局和局部结构信息。其次,提出了一种特征交互模块来融合来自交叉点云的信息。第三,提出了一种并行和差分样本共识方法来基于所生成的登记结果计算输入点云的变换矩阵。所提出的生成神经网络通过维持数据分布和结构相似度,在GAN框架中训练。 ModelNet40和7Scene数据集的实验表明,所提出的算法实现了最先进的准确性和效率。值得注意的是,与基于最先进的对应的算法相比,我们的方法减少了注册错误(CD)的$ 2 \次数为$ 12 \倍运行时间。
translated by 谷歌翻译
部分重叠点云的实时登记具有对自治车辆和多助手SLAM的合作看法的新兴应用。这些应用中点云之间的相对转换高于传统的SLAM和OCOMOTRY应用程序,这挑战了对应的识别和成功的注册。在本文中,我们提出了一种用于部分重叠点云的新颖注册方法,其中使用有效的点亮特征编码器学习对应关系,并使用基于图形的注意网络改进。这种注意网络利用关键点之间的几何关系,以改善点云中的匹配,低重叠。在推断时间下,通过通过样本共识稳健地拟合对应关系来获得相对姿态变换。在基蒂数据集和新的合成数据集上进行评估,包括低重叠点云,位移高达30米。所提出的方法在Kitti DataSet上使用最先进的方法实现了对映射性能,并且优于低重叠点云的现有方法。此外,所提出的方法可以比竞争方法更快地实现更快的推理时间,低至410ms,低至410ms。我们的代码和数据集可在https://github.com/eduardohenriquearnold/fastreg提供。
translated by 谷歌翻译
3D point cloud registration is a fundamental problem in computer vision and robotics. Recently, learning-based point cloud registration methods have made great progress. However, these methods are sensitive to outliers, which lead to more incorrect correspondences. In this paper, we propose a novel deep graph matching-based framework for point cloud registration. Specifically, we first transform point clouds into graphs and extract deep features for each point. Then, we develop a module based on deep graph matching to calculate a soft correspondence matrix. By using graph matching, not only the local geometry of each point but also its structure and topology in a larger range are considered in establishing correspondences, so that more correct correspondences are found. We train the network with a loss directly defined on the correspondences, and in the test stage the soft correspondences are transformed into hard one-to-one correspondences so that registration can be performed by a correspondence-based solver. Furthermore, we introduce a transformer-based method to generate edges for graph construction, which further improves the quality of the correspondences. Extensive experiments on object-level and scene-level benchmark datasets show that the proposed method achieves state-of-the-art performance. The code is available at: \href{https://github.com/fukexue/RGM}{https://github.com/fukexue/RGM}.
translated by 谷歌翻译
在这项工作中,我们解决了从点云数据估算对象的6D姿势的任务。尽管最近基于学习的方法解决此任务的方法在合成数据集上表现出了很大的成功,但我们观察到它们在存在现实世界数据的情况下失败了。因此,我们分析了这些故障的原因,我们将其追溯到源云和目标点云的特征分布之间的差,以及广泛使用的SVD损耗函数对两个点之间旋转范围的敏感性云。我们通过基于点对应的负模可能性引入损失函数来解决新的归一化策略,匹配归一化以及第二个挑战。我们的两个贡献是一般的,可以应用于许多现有的基于学习的3D对象注册框架,我们通过在其中两个DCP和IDAM中实现它们来说明它们。我们对现实的TUD-L,LineMod和canluded-LineMod数据集的实验证明了我们策略的好处。它们允许首次基于学习的3D对象注册方法在现实世界中获得有意义的结果。因此,我们希望它们是点云注册方法未来开发的关键。
translated by 谷歌翻译
如何提取重要点云特征并估计它们之间的姿势仍然是一个具有挑战性的问题,因为点云的固有缺乏结构和暧昧的顺序排列。尽管对大多数3D计算机视觉任务的基于深度学习的方法进行了重大改进,例如对象分类,对象分割和点云注册,但功能之间的一致性在现有的基于学习的流水线上仍然没有吸引力。在本文中,我们提出了一种用于复杂对准场景的新型学习的对齐网络,标题为深度特征一致性,并由三个主模块组成:多尺度图形特征合并网络,用于将几何对应集转换为高维特征,对应加权用于构建多个候选内部子集的模块,以及命名为深度特征匹配的Procrustes方法,用于给出闭合方案来估计相对姿势。作为深度特征匹配模块的最重要步骤,构造每个Inlier子集的特征一致性矩阵以获得其主要向量作为相应子集的含义似然性。我们全面地验证了我们在3DMATCH数据集和基提ODOMOTRY数据集中的方法的鲁棒性和有效性。对于大型室内场景,3DMATCH数据集上的注册结果表明,我们的方法优于最先进的传统和基于学习的方法。对于Kitti户外场景,我们的方法仍然能够降低转换错误。我们还在交叉数据集中探讨其强大的泛化能力。
translated by 谷歌翻译
循环结束是自动移动系统同时本地化和映射(SLAM)的基本组成部分。在视觉大满贯领域,单词袋(弓)在循环封闭方面取得了巨大的成功。循环搜索的弓特征也可以在随后的6-DOF环校正中使用。但是,对于3D激光雷达的猛击,最新方法可能无法实时识别循环,并且通常无法纠正完整的6-DOF回路姿势。为了解决这一限制,我们呈现了一袋新颖的单词,以实时循环在3D LIDAR大满贯中关闭,称为Bow3D。我们方法的新颖性在于,它不仅有效地识别了重新审视的环路,而且还实时纠正了完整的6型循环姿势。 BOW3D根据3D功能link3D构建单词袋,该链接有效,姿势不变,可用于准确的点对点匹配。我们将我们提出的方法嵌入了3D激光射击系统中,以评估循环闭合性能。我们在公共数据集上测试我们的方法,并将其与其他最先进的算法进行比较。在大多数情况下,BOW3D在F1 MAX和扩展精度分数方面表现出更好的性能,并具有出色的实时性能。值得注意的是,BOW3D平均需要50毫秒才能识别和纠正Kitti 00中的循环(包括4K+ 64射线激光扫描),当在使用Intel Core i7 @2.2 GHz处理器的笔记本上执行时。
translated by 谷歌翻译
凭借在运动扫描系统生产的LIDAR点云注册的目的,我们提出了一种新颖的轨迹调整程序,可以利用重叠点云和关节集成之间所选可靠的3D点对应关系的自动提取。 (调整)与所有原始惯性和GNSS观察一起。这是使用紧密耦合的方式执行的动态网络方法来执行,这通过在传感器处的错误而不是轨迹等级来实现最佳补偿的轨迹。 3D对应关系被制定为该网络内的静态条件,并且利用校正的轨迹和可能在调整内确定的其他参数,以更高的精度生成注册点云。我们首先描述了选择对应关系以及将它们作为新观察模型作为动态网络插入的方法。然后,我们描述了对具有低成本MEMS惯性传感器的实用空气激光扫描场景中提出框架的性能进行评估。在进行的实验中,建议建立3D对应关系的方法在确定各种几何形状的点对点匹配方面是有效的,例如树木,建筑物和汽车。我们的结果表明,该方法提高了点云登记精度,否则在确定的平台姿态或位置(以标称和模拟的GNSS中断条件)中的错误受到强烈影响,并且可能仅使用总计的一小部分确定未知的触觉角度建立的3D对应数量。
translated by 谷歌翻译
配对点云之间的低空区域使被捕获的特征非常自信,导致尖端模型以质量较差的云登记。除了传统的智慧之外,我们还提出了一个有趣的问题:是否有可能在两个低重叠点云之间利用中间却又错位的图像来增强尖端注册模型的性能?为了回答它,我们提出了一个被称为Imlovenet的低重叠点云对的未对准图像支持的注册网络。 Imlovenet首先学习跨不同模态的三重深特征,然后将这些特征导出到两个阶段分类器中,以逐步获得两个点云之间的高信心重叠区域。因此,软对应关系在预测的重叠区域中得到了很好的确定,从而导致了准确的刚性转换。 Imlovenet易于实现,但有效,因为1)未对准的图像为两个低重叠点云提供了更清晰的重叠信息,以更好地定位重叠零件; 2)它包含某些几何知识,以提取更好的深度特征; 3)它不需要成像设备的外部参数,相对于3D点云的参考框架。对各种基准的广泛定性和定量评估证明了我们的iMlovenet比最新方法的有效性和优越性。
translated by 谷歌翻译
随着自动驾驶行业正在缓慢成熟,视觉地图本地化正在迅速成为尽可能准确定位汽车的标准方法。由于相机或激光镜等视觉传感器返回的丰富数据,研究人员能够构建具有各种细节的不同类型的地图,并使用它们来实现高水平的车辆定位准确性和在城市环境中的稳定性。与流行的SLAM方法相反,视觉地图本地化依赖于预先构建的地图,并且仅通过避免误差积累或漂移来提高定位准确性。我们将视觉地图定位定义为两个阶段的过程。在位置识别的阶段,通过将视觉传感器输出与一组地理标记的地图区域进行比较,可以确定车辆在地图中的初始位置。随后,在MAP指标定位的阶段,通过连续将视觉传感器的输出与正在遍历的MAP的当前区域进行对齐,对车辆在地图上移动时进行了跟踪。在本文中,我们调查,讨论和比较两个阶段的基于激光雷达,基于摄像头和跨模式的视觉图本地化的最新方法,以突出每种方法的优势。
translated by 谷歌翻译
基于深度学习的视觉位置识别技术近年来将自己作为最先进的技术,并不能很好地概括与训练集在视觉上不同的环境。因此,为了达到最佳性能,有时有必要将网络调整到目标环境中。为此,我们根据同时定位和映射(SLAM)作为监督信号而不需要GPS或手动标记,提出了一个基于强大的姿势图优化的自我监督域校准程序。此外,我们利用该程序来改善在安全关键应用中很重要的位置识别匹配的不确定性估计。我们表明,我们的方法可以改善目标环境与训练集不同的最先进技术的性能,并且我们可以获得不确定性估计。我们认为,这种方法将帮助从业者在现实世界应用中部署健壮的位置识别解决方案。我们的代码公开可用:https://github.com/mistlab/vpr-calibration-and-uncrightity
translated by 谷歌翻译
成功的点云注册依赖于在强大的描述符上建立的准确对应关系。但是,现有的神经描述符要么利用旋转变化的主链,其性能在较大的旋转下下降,要么编码局部几何形状,而局部几何形状不太明显。为了解决这个问题,我们介绍Riga以学习由设计和全球了解的旋转不变的描述符。从稀疏局部区域的点对特征(PPF)中,旋转不变的局部几何形状被编码为几何描述符。随后,全球对3D结构和几何环境的认识都以旋转不变的方式合并。更具体地说,整个框架的3D结构首先由我们的全球PPF签名表示,从中学到了结构描述符,以帮助几何描述符感知本地区域以外的3D世界。然后将整个场景的几何上下文全局汇总到描述符中。最后,将稀疏区域的描述插值到密集的点描述符,从中提取对应关系进行注册。为了验证我们的方法,我们对对象和场景级数据进行了广泛的实验。在旋转较大的情况下,Riga就模型Net40的相对旋转误差而超过了最先进的方法8 \度,并将特征匹配的回忆提高了3DLOMATCH上的至少5个百分点。
translated by 谷歌翻译
特征提取和匹配是许多计算机视觉任务的基本部分,例如2D或3D对象检测,识别和注册。众所周知,2D功能提取和匹配已经取得了巨大的成功。不幸的是,在3D领域,由于描述性和效率低下,目前的方法无法支持3D激光雷达传感器在视觉任务中的广泛应用。为了解决此限制,我们提出了一种新颖的3D特征表示方法:3D激光点云的线性关键点表示,称为link3d。 Link3D的新颖性在于它完全考虑了LiDar Point Cloud的特征(例如稀疏性,场景的复杂性),并用其强大的邻居键盘来表示当前关键点,从而对当前关键点的描述提供了强烈的约束。提出的链接3D已在两个公共数据集(即Kitti,Steven VLP16)上进行了评估,实验结果表明,我们的方法在匹配性能方面的最先进表现都大大优于最先进的方法。更重要的是,Link3D显示出出色的实时性能(基于LIDAR的频率10 Hz)。 Link3D平均仅需32毫秒即可从64射线激光束收集的点云中提取功能,并且仅需大约8毫秒即可匹配两次LIDAR扫描,当时用Intel Core i7 @2.2 GHz处理器执行笔记本。此外,我们的方法可以广泛扩展到各种3D视觉应用。在本文中,我们已将Link3D应用于3D注册,LiDAR ODOMETIRE和放置识别任务,并与最先进的方法相比实现了竞争成果。
translated by 谷歌翻译