在涉及矩阵计算的问题中,杠杆的概念发现了大量应用。特别是,将矩阵的列与其领先的单数矢量跨越的子空间相关联的杠杆分数有助于揭示列亚集,以大约将矩阵分配给具有质量保证的矩阵。因此,它们为各种机器学习方法提供了坚实的基础。在本文中,我们扩展了杠杆分数的定义,以将矩阵的列与单数矢量的任意子集相关联。我们通过将杠杆分数和子空间之间的主要角度的概念联系起来,在列和奇异矢量子集之间建立精确的联系。我们采用此结果来设计近似算法,并为两个众所周知的问题提供可证明的保证:广义列子集选择和稀疏的规范相关分析。我们运行数值实验,以进一步了解所提出的方法。我们得出的新颖界限提高了我们对矩阵近似中基本概念的理解。此外,我们的见解可能是进一步贡献的基础。
translated by 谷歌翻译
Low-rank matrix approximations, such as the truncated singular value decomposition and the rank-revealing QR decomposition, play a central role in data analysis and scientific computing. This work surveys and extends recent research which demonstrates that randomization offers a powerful tool for performing low-rank matrix approximation. These techniques exploit modern computational architectures more fully than classical methods and open the possibility of dealing with truly massive data sets.This paper presents a modular framework for constructing randomized algorithms that compute partial matrix decompositions. These methods use random sampling to identify a subspace that captures most of the action of a matrix. The input matrix is then compressed-either explicitly or implicitly-to this subspace, and the reduced matrix is manipulated deterministically to obtain the desired low-rank factorization. In many cases, this approach beats its classical competitors in terms of accuracy, speed, and robustness. These claims are supported by extensive numerical experiments and a detailed error analysis.The specific benefits of randomized techniques depend on the computational environment. Consider the model problem of finding the k dominant components of the singular value decomposition of an m × n matrix. (i) For a dense input matrix, randomized algorithms require O(mn log(k)) floating-point operations (flops) in contrast with O(mnk) for classical algorithms. (ii) For a sparse input matrix, the flop count matches classical Krylov subspace methods, but the randomized approach is more robust and can easily be reorganized to exploit multi-processor architectures. (iii) For a matrix that is too large to fit in fast memory, the randomized techniques require only a constant number of passes over the data, as opposed to O(k) passes for classical algorithms. In fact, it is sometimes possible to perform matrix approximation with a single pass over the data.
translated by 谷歌翻译
我们研究基于Krylov子空间的迭代方法,用于在任何Schatten $ p $ Norm中的低级别近似值。在这里,通过矩阵向量产品访问矩阵$ a $ $如此$ \ | a(i -zz^\ top)\ | _ {s_p} \ leq(1+ \ epsilon)\ min_ {u^\ top u = i_k} } $,其中$ \ | m \ | _ {s_p} $表示$ m $的单数值的$ \ ell_p $ norm。对于$ p = 2 $(frobenius norm)和$ p = \ infty $(频谱规范)的特殊情况,musco and Musco(Neurips 2015)获得了基于Krylov方法的算法,该方法使用$ \ tilde {o}(k)(k /\ sqrt {\ epsilon})$ matrix-vector产品,改进na \“ ive $ \ tilde {o}(k/\ epsilon)$依赖性,可以通过功率方法获得,其中$ \ tilde {o} $抑制均可抑制poly $(\ log(dk/\ epsilon))$。我们的主要结果是仅使用$ \ tilde {o}(kp^{1/6}/\ epsilon^{1/3} {1/3})$ matrix $ matrix的算法 - 矢量产品,并为所有$ p \ geq 1 $。为$ p = 2 $工作,我们的限制改进了先前的$ \ tilde {o}(k/\ epsilon^{1/2})$绑定到$ \ tilde {o}(k/\ epsilon^{1/3})$。由于schatten- $ p $和schatten-$ \ infty $ norms在$(1+ \ epsilon)$ pers $ p时相同\ geq(\ log d)/\ epsilon $,我们的界限恢复了Musco和Musco的结果,以$ p = \ infty $。此外,我们证明了矩阵矢量查询$ \ omega的下限(1/\ epsilon^ {1/3})$对于任何固定常数$ p \ geq 1 $,表明令人惊讶的$ \ tilde {\ theta}(1/\ epsilon^{ 1/3})$是常数〜$ k $的最佳复杂性。为了获得我们的结果,我们介绍了几种新技术,包括同时对多个Krylov子空间进行优化,以及针对分区操作员的不平等现象。我们在[1,2] $中以$ p \的限制使用了Araki-lieb-thirring Trace不平等,而对于$ p> 2 $,我们呼吁对安装分区操作员的规范压缩不平等。
translated by 谷歌翻译
从大型套装中选择不同的和重要的项目,称为地标是机器学习兴趣的问题。作为一个具体示例,为了处理大型训练集,内核方法通常依赖于基于地标的选择或采样的低等级矩阵NYSTR \“OM近似值。在此上下文中,我们提出了一个确定性和随机的自适应算法在培训数据集中选择地标点。这些地标与克尼利克里斯特步函数序列的最小值有关。除了ChristOffel功能和利用分数之间的已知联系,我们的方法也有限决定性点过程(DPP)也是如此解释。即,我们的建设以类似于DPP的方式促进重要地标点之间的多样性。此外,我们解释了我们的随机自适应算法如何影响内核脊回归的准确性。
translated by 谷歌翻译
Tensor完成是矩阵完成的自然高阶泛化,其中目标是从其条目的稀疏观察中恢复低级张量。现有算法在没有可证明的担保的情况下是启发式,基于解决运行不切实际的大型半纤维程序,或者需要强大的假设,例如需要因素几乎正交。在本文中,我们介绍了交替最小化的新变型,其又通过了解如何对矩阵设置中的交替最小化的收敛性的进展措施来调整到张量设置的启发。我们展示了强大的可证明的保证,包括表明我们的算法即使当因素高度相关时,我们的算法也会在真正的张量线上会聚,并且可以在几乎线性的时间内实现。此外,我们的算法也非常实用,我们表明我们可以完成具有千维尺寸的三阶张量,从观察其条目的微小一部分。相比之下,有些令人惊讶的是,我们表明,如果没有我们的新扭曲,则表明交替最小化的标准版本可以在实践中以急剧速度收敛。
translated by 谷歌翻译
我们创建经典的(非量词)动态数据结构,为推荐系统和最小二乘回归的查询提供了与量子类似物相当的查询。近年来,这种算法的去量化引起了人们的关注。我们为这些问题获得了更清晰的界限。更重要的是,我们通过争辩说,这些问题的先前量子启发算法正在做杠杆或脊杠杆得分取样,以实现这些改进。这些是随机数值线性代数中强大而标准的技术。有了这种识别,我们能够在数值线性代数中采用大量工作来获得这些问题的算法,这些算法比现有方法更简单或更快(或两者兼而有之)。我们的实验表明,所提出的数据结构在现实世界数据集上也很好地工作。
translated by 谷歌翻译
The Forster transform is a method of regularizing a dataset by placing it in {\em radial isotropic position} while maintaining some of its essential properties. Forster transforms have played a key role in a diverse range of settings spanning computer science and functional analysis. Prior work had given {\em weakly} polynomial time algorithms for computing Forster transforms, when they exist. Our main result is the first {\em strongly polynomial time} algorithm to compute an approximate Forster transform of a given dataset or certify that no such transformation exists. By leveraging our strongly polynomial Forster algorithm, we obtain the first strongly polynomial time algorithm for {\em distribution-free} PAC learning of halfspaces. This learning result is surprising because {\em proper} PAC learning of halfspaces is {\em equivalent} to linear programming. Our learning approach extends to give a strongly polynomial halfspace learner in the presence of random classification noise and, more generally, Massart noise.
translated by 谷歌翻译
数据驱动的算法可以通过从输入的训练样本中学习,可以使其内部结构或参数适应来自未知应用程序特定分布的输入。最近的一些作品将这种方法应用于数值线性代数中的问题,获得了绩效的显着经验增长。然而,尚无理论上的成功解释。在这项工作中,我们证明了这些算法的概括范围,在Gupta和Roughgarden提出的数据驱动算法选择的PAC学习框架内(Sicomp 2017)。我们的主要结果与Indyk等人的基于学习的低级近似算法的脂肪破碎维度紧密匹配(Neurips 2019)。我们的技术是一般的,并为数值线性代数中的许多其他最近提出的数据驱动算法提供了概括,涵盖了基于草图的基于草图的方法和基于多机的方法。这大大扩展了可用的PAC学习分析的数据驱动算法类别。
translated by 谷歌翻译
我们提出了一个算法框架,用于近距离矩阵上的量子启发的经典算法,概括了Tang的突破性量子启发算法开始的一系列结果,用于推荐系统[STOC'19]。由量子线性代数算法和gily \'en,su,low和wiebe [stoc'19]的量子奇异值转换(SVT)框架[SVT)的动机[STOC'19],我们开发了SVT的经典算法合适的量子启发的采样假设。我们的结果提供了令人信服的证据,表明在相应的QRAM数据结构输入模型中,量子SVT不会产生指数量子加速。由于量子SVT框架基本上概括了量子线性代数的所有已知技术,因此我们的结果与先前工作的采样引理相结合,足以概括所有有关取消量子机器学习算法的最新结果。特别是,我们的经典SVT框架恢复并经常改善推荐系统,主成分分析,监督聚类,支持向量机器,低秩回归和半决赛程序解决方案的取消结果。我们还为汉密尔顿低级模拟和判别分析提供了其他取消化结果。我们的改进来自识别量子启发的输入模型的关键功能,该模型是所有先前量子启发的结果的核心:$ \ ell^2 $ -Norm采样可以及时近似于其尺寸近似矩阵产品。我们将所有主要结果减少到这一事实,使我们的简洁,独立和直观。
translated by 谷歌翻译
在数值线性代数社区中,建议要获得诸如等级计算等各种问题的几乎最佳边界,找到最大线性独立的列(基础),回归或低秩近似,自然方式是解决尼尔森和尼文森的主要开放问题(Focs,2013)。该问题关于现有的忽略子空间嵌入的草图维度的对数因子,实现了恒因子近似的嵌入。我们展示了如何使用精细的草图技术绕过这个问题,并获得这些问题的最佳或几乎最佳的范围。我们使用的关键技术是基于不确定原理和提取器的Indyk的明确映射,在首次应用已知的漏窃子空间嵌入后,允许我们快速展开载体的质量,以便采样现在有效。由此,我们避免了在使用矩阵Chernoff不平等的界限中是标准的草图维度的对数因子。对于排名计算的基本问题和找到基础,我们的算法改善了张,郭和刘(Jacm,2013),并且在恒因因子和多个(日志日志(n)) - 因子中是最佳的。此外,对于恒定因子回归和低秩近似,我们给出了当前矩阵乘法指数的第一个最佳算法。
translated by 谷歌翻译
我们研究了用于线性回归的主动采样算法,该算法仅旨在查询目标向量$ b \ in \ mathbb {r} ^ n $的少量条目,并将近最低限度输出到$ \ min_ {x \ In \ mathbb {r} ^ d} \ | ax-b \ | $,其中$ a \ in \ mathbb {r} ^ {n \ times d} $是一个设计矩阵和$ \ | \ cdot \ | $是一些损失函数。对于$ \ ell_p $ norm回归的任何$ 0 <p <\ idty $,我们提供了一种基于Lewis权重采样的算法,其使用只需$ \ tilde {o}输出$(1+ \ epsilon)$近似解决方案(d ^ {\ max(1,{p / 2})} / \ mathrm {poly}(\ epsilon))$查询到$ b $。我们表明,这一依赖于$ D $是最佳的,直到对数因素。我们的结果解决了陈和Derezi的最近开放问题,陈和Derezi \'{n} Ski,他们为$ \ ell_1 $ norm提供了附近的最佳界限,以及$ p \中的$ \ ell_p $回归的次优界限(1,2) $。我们还提供了$ O的第一个总灵敏度上限(D ^ {\ max \ {1,p / 2 \} \ log ^ 2 n)$以满足最多的$ p $多项式增长。这改善了Tukan,Maalouf和Feldman的最新结果。通过将此与我们的技术组合起来的$ \ ell_p $回归结果,我们获得了一个使$ \ tilde o的活动回归算法(d ^ {1+ \ max \ {1,p / 2 \}} / \ mathrm {poly}。 (\ epsilon))$疑问,回答陈和德里兹的另一个打开问题{n}滑雪。对于Huber损失的重要特殊情况,我们进一步改善了我们对$ \ tilde o的主动样本复杂性的绑定(d ^ {(1+ \ sqrt2)/ 2} / \ epsilon ^ c)$和非活跃$ \ tilde o的样本复杂性(d ^ {4-2 \ sqrt 2} / \ epsilon ^ c)$,由于克拉克森和伍德拉夫而改善了Huber回归的以前的D ^ 4 $。我们的敏感性界限具有进一步的影响,使用灵敏度采样改善了各种先前的结果,包括orlicz规范子空间嵌入和鲁棒子空间近似。最后,我们的主动采样结果为每种$ \ ell_p $ norm提供的第一个Sublinear时间算法。
translated by 谷歌翻译
kronecker回归是一个高度结构的最小二乘问题$ \ min _ {\ mathbf {x}}} \ lvert \ mathbf {k} \ mathbf {x} - \ mathbf {b} \ rvert_ \ rvert_ {2}^2 $矩阵$ \ mathbf {k} = \ mathbf {a}^{(1)} \ otimes \ cdots \ cdots \ otimes \ mathbf {a}^{(n)} $是因子矩阵的Kronecker产品。这种回归问题是在广泛使用的最小二乘(ALS)算法的每个步骤中都出现的,用于计算张量的塔克分解。我们介绍了第一个用于求解Kronecker回归的子次数算法,以避免在运行时间中避免指数项$ o(\ varepsilon^{ - n})$的$(1+ \ varepsilon)$。我们的技术结合了利用分数抽样和迭代方法。通过扩展我们对一个块是Kronecker产品的块设计矩阵的方法,我们还实现了(1)Kronecker Ridge回归的亚次级时间算法,并且(2)更新ALS中Tucker分解的因子矩阵,这不是一个不是一个纯Kronecker回归问题,从而改善了Tucker ALS的所有步骤的运行时间。我们证明了该Kronecker回归算法在合成数据和现实世界图像张量上的速度和准确性。
translated by 谷歌翻译
我们研究了用$ q $ modes $ a \ in \ mathbb {r}^{n \ times \ ldots \ times n} $的近似给定张量的问题。图$ g =(v,e)$,其中$ | v | = q $,以及张张量的集合$ \ {u_v \ mid v \ in v \} $,以$ g $指定的方式收缩以获取张量$ t $。对于$ u_v $的每种模式,对应于$ v $的边缘事件,尺寸为$ k $,我们希望找到$ u_v $,以便最小化$ t $和$ a $之间的frobenius norm距离。这概括了许多众所周知的张量网络分解,例如张量列,张量环,塔克和PEPS分解。我们大约是二进制树网络$ t'$带有$ o(q)$核的大约$ a $,因此该网络的每个边缘上的尺寸最多是$ \ widetilde {o}(k^{o(dt) } \ cdot q/\ varepsilon)$,其中$ d $是$ g $的最大度,$ t $是其树宽,因此$ \ | a -t'-t'\ | _f^2 \ leq(1 + \ Varepsilon)\ | a -t \ | _f^2 $。我们算法的运行时间为$ o(q \ cdot \ text {nnz}(a)) + n \ cdot \ text {poly}(k^{dt} q/\ varepsilon)$,其中$ \ text {nnz }(a)$是$ a $的非零条目的数量。我们的算法基于一种可能具有独立感兴趣的张量分解的新维度降低技术。我们还开发了固定参数可处理的$(1 + \ varepsilon)$ - 用于张量火车和塔克分解的近似算法,改善了歌曲的运行时间,Woodruff和Zhong(Soda,2019),并避免使用通用多项式系统求解器。我们表明,我们的算法对$ 1/\ varepsilon $具有几乎最佳的依赖性,假设没有$ O(1)$ - 近似算法的$ 2 \至4 $ norm,并且运行时间比蛮力更好。最后,我们通过可靠的损失函数和固定参数可拖动CP分解给出了塔克分解的其他结果。
translated by 谷歌翻译
本文缩小了先前有关量子线性代数的文献与量子计算机上的实用数据分析之间的差异,从而使量子程序形式化,以加快机器学习中数据表示的本本本特征的解决方案。这些子例程的功率和实际用途通过新的量子算法(输入矩阵的大小中的sublinear)显示,用于主成分分析,通信分析和潜在的语义分析。我们提供了对运行时的理论分析,并在随机算法的误差上证明了紧密的界限。我们在多个数据集上运行实验,以模拟PCA的尺寸减小,以通过新型例程进行图像分类。结果表明,不依赖输入的大小的运行时参数是合理的,并且计算模型上的错误很小,从而允许竞争性分类性能。
translated by 谷歌翻译
素描和项目是一个框架,它统一了许多已知的迭代方法来求解线性系统及其变体,并进一步扩展了非线性优化问题。它包括流行的方法,例如随机kaczmarz,坐标下降,凸优化的牛顿方法的变体等。在本文中,我们通过新的紧密频谱边界为预期的草图投影矩阵获得了素描和项目的收敛速率的敏锐保证。我们的估计值揭示了素描和项目的收敛率与另一个众所周知但看似无关的算法家族的近似误差之间的联系,这些算法使用草图加速了流行的矩阵因子化,例如QR和SVD。这种连接使我们更接近准确量化草图和项目求解器的性能如何取决于其草图大小。我们的分析不仅涵盖了高斯和次高斯的素描矩阵,还涵盖了一个有效的稀疏素描方法,称为较少的嵌入方法。我们的实验备份了理论,并证明即使极稀疏的草图在实践中也显示出相同的收敛属性。
translated by 谷歌翻译
The affine rank minimization problem consists of finding a matrix of minimum rank that satisfies a given system of linear equality constraints. Such problems have appeared in the literature of a diverse set of fields including system identification and control, Euclidean embedding, and collaborative filtering. Although specific instances can often be solved with specialized algorithms, the general affine rank minimization problem is NP-hard, because it contains vector cardinality minimization as a special case.In this paper, we show that if a certain restricted isometry property holds for the linear transformation defining the constraints, the minimum rank solution can be recovered by solving a convex optimization problem, namely the minimization of the nuclear norm over the given affine space. We present several random ensembles of equations where the restricted isometry property holds with overwhelming probability, provided the codimension of the subspace is Ω(r(m + n) log mn), where m, n are the dimensions of the matrix, and r is its rank.The techniques used in our analysis have strong parallels in the compressed sensing framework. We discuss how affine rank minimization generalizes this pre-existing concept and outline a dictionary relating concepts from cardinality minimization to those of rank minimization. We also discuss several algorithmic approaches to solving the norm minimization relaxations, and illustrate our results with numerical examples.
translated by 谷歌翻译
Kernel matrices, as well as weighted graphs represented by them, are ubiquitous objects in machine learning, statistics and other related fields. The main drawback of using kernel methods (learning and inference using kernel matrices) is efficiency -- given $n$ input points, most kernel-based algorithms need to materialize the full $n \times n$ kernel matrix before performing any subsequent computation, thus incurring $\Omega(n^2)$ runtime. Breaking this quadratic barrier for various problems has therefore, been a subject of extensive research efforts. We break the quadratic barrier and obtain $\textit{subquadratic}$ time algorithms for several fundamental linear-algebraic and graph processing primitives, including approximating the top eigenvalue and eigenvector, spectral sparsification, solving linear systems, local clustering, low-rank approximation, arboricity estimation and counting weighted triangles. We build on the recent Kernel Density Estimation framework, which (after preprocessing in time subquadratic in $n$) can return estimates of row/column sums of the kernel matrix. In particular, we develop efficient reductions from $\textit{weighted vertex}$ and $\textit{weighted edge sampling}$ on kernel graphs, $\textit{simulating random walks}$ on kernel graphs, and $\textit{importance sampling}$ on matrices to Kernel Density Estimation and show that we can generate samples from these distributions in $\textit{sublinear}$ (in the support of the distribution) time. Our reductions are the central ingredient in each of our applications and we believe they may be of independent interest. We empirically demonstrate the efficacy of our algorithms on low-rank approximation (LRA) and spectral sparsification, where we observe a $\textbf{9x}$ decrease in the number of kernel evaluations over baselines for LRA and a $\textbf{41x}$ reduction in the graph size for spectral sparsification.
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
张量火车的分解因其高维张量的简洁表示,因此在机器学习和量子物理学中广泛使用,克服了维度的诅咒。交叉近似 - 从近似形式开发用于从一组选定的行和列中表示矩阵,这是一种有效的方法,用于构建来自其少数条目的张量的张量列器分解。虽然张量列车交叉近似在实际应用中取得了显着的性能,但迄今为止缺乏其理论分析,尤其是在近似误差方面的理论分析。据我们所知,现有结果仅提供元素近似精度的保证,这会导致扩展到整个张量时的束缚非常松。在本文中,我们通过提供精确测量和嘈杂测量的整个张量来保证准确性来弥合这一差距。我们的结果说明了选定子观察器的选择如何影响交叉近似的质量,并且模型误差和/或测量误差引起的近似误差可能不会随着张量的顺序而指数增长。这些结果通过数值实验来验证,并且可能对高阶张量的交叉近似值(例如在量子多体状态的描述中遇到的)具有重要意义。
translated by 谷歌翻译
在线性回归中,我们希望根据少量样本估算超过$ d $维的输入点和实价响应的最佳最小二乘预测。根据标准随机设计分析,其中绘制样品i.i.d。从输入分布中,该样品的最小二乘解决方案可以看作是最佳的自然估计器。不幸的是,该估计器几乎总是产生来自输入点的随机性的不良偏置,这在模型平均中是一个重要的瓶颈。在本文中,我们表明可以绘制非i.i.d。输入点的样本,无论响应模型如何,最小二乘解决方案都是最佳的无偏估计器。此外,可以通过增强先前绘制的I.I.D。可以有效地生产该样本。带有额外的$ d $点的样品,根据点由点跨越的平方量重新缩放的输入分布构建的一定确定点过程,共同绘制。在此激励的基础上,我们开发了一个理论框架来研究体积响应的采样,并在此过程中证明了许多新的矩阵期望身份。我们使用它们来表明,对于任何输入分布和$ \ epsilon> 0 $,有一个随机设计由$ o(d \ log d+ d+ d+ d/\ epsilon)$点,从中可以从中构造出无偏见的估计器,其预期的是正方形损耗在整个发行版中,$ 1+\ epsilon $ times最佳损失。我们提供有效的算法来在许多实际设置中生成这种无偏估计量,并在实验中支持我们的主张。
translated by 谷歌翻译