$ \ texttt {gcastle} $是一个端到端Python工具箱,用于因果结构学习。它提供了从模拟器或现实世界数据集的生成数据,从数据学习因果结构的功能,以及评估学到的图表,以及有用的实践,例如先验知识插入,初步邻域选择和后处理以删除错误发现。与相关包相比,$ \ texttt {gcastle} $包括许多最近开发的基于渐变的因果发现方法,具有可选的GPU加速。$ \ texttt {gcastle} $为可以直接尝试代码以及具有图形用户干扰的从业者来为研究人员提供方便。当前版本也提供了电信中的三个现实世界数据集。$ \ texttt {gcastle} $可在Apache许可证2.0下获得\ url {https://github.com/huawei-noah/trustworthyai/tree/master/gcastle}。
translated by 谷歌翻译
在制造过程中通常检查因果关系,以支持故障调查,进行干预并做出战略决策。行业4.0已获得越来越多的数据,可实现数据驱动的因果发现(CD)。考虑到最近提出的CD方法的数量越来越多,有必要在公开可用的数据集上引入严格的基准测试程序,因为它们代表了公平比较和验证不同方法的基础。这项工作在连续制造过程中介绍了两个用于CD的新型公共数据集。第一个数据集使用著名的田纳西州伊士曼模拟器进行故障检测和过程控制。第二个数据集是从超级加工的食品制造厂中提取的,其中包括对该工厂的描述以及多个地面真相。这些数据集用于基于不同的指标提出基准测试程序,并对多种CD算法进行了评估。这项工作允许在现实条件下测试CD方法,从而为特定目标应用程序选择最合适的方法。数据集可在以下链接中找到:https://github.com/giovannimen
translated by 谷歌翻译
本文研究了从观察数据学习因果关系的问题。我们用二进制图邻接矩阵参数化的形式重整结构方程模型(SEM),并显示,如果原始SEM是可识别的,则可以识别二进制邻接矩阵到真实因果图的超图在温和的条件下。然后,我们利用所述重新设计的SEM来开发一种因果结构学习方法,可以通过利用对非循环性和Gumbel-Softmax方法的平滑表征来实现基于梯度的优化来有效地接受训练,以近似于二进制邻接矩阵。发现获得的条目通常在零或一个附近,并且可以容易地阈值以识别边缘。我们对合成和实时数据集进行实验,以验证所提出的方法的有效性,并表明它容易包括不同的平滑模型功能,并在考虑大多数数据集中实现了大大提高的性能。
translated by 谷歌翻译
Causal structure learning from observational data remains a non-trivial task due to various factors such as finite sampling, unobserved confounding factors, and measurement errors. Constraint-based and score-based methods tend to suffer from high computational complexity due to the combinatorial nature of estimating the directed acyclic graph (DAG). Motivated by the `Cause-Effect Pair' NIPS 2013 Workshop on Causality Challenge, in this paper, we take a different approach and generate a probability distribution over all possible graphs informed by the cause-effect pair features proposed in response to the workshop challenge. The goal of the paper is to propose new methods based on this probabilistic information and compare their performance with traditional and state-of-the-art approaches. Our experiments, on both synthetic and real datasets, show that our proposed methods not only have statistically similar or better performances than some traditional approaches but also are computationally faster.
translated by 谷歌翻译
我们介绍了Dowhy Python库的扩展Dowhy-GCM,该库利用图形因果模型。与现有的因果关系库(主要关注效应估计问题)不同,使用Dowhy-GCM,用户可以提出各种其他因果问题,例如确定异常值的根本原因和分布变化的根本原因,因果结构学习,归因于因果关系,以及因果影响,以及归因于因果关系因果结构的诊断。为此,Dowhy-GCM用户通过图形因果模型在研究系统中的变量之间的首次模型导致关系效果关系,符合接下来变量的因果机制,然后提出因果问题。所有这些步骤仅在Dowhy-GCM中采用几行代码。该库可在https://github.com/py-why/dowhy上找到。
translated by 谷歌翻译
本文提出了一种新的因果发现方法,即结构不可知的建模(SAM)。SAM利用条件独立性和分布不对称性,旨在从观察数据中找到潜在的因果结构。该方法基于不同玩家之间的游戏,该游戏将每个变量分布有条件地作为神经网估算,而对手则旨在区分生成的数据与原始数据。结合分布估计,稀疏性和无环限制的学习标准用于通过随机梯度下降来实施图形结构和参数的优化。SAM在合成和真实数据上进行了实验验证。
translated by 谷歌翻译
Estimating the structure of directed acyclic graphs (DAGs) of features (variables) plays a vital role in revealing the latent data generation process and providing causal insights in various applications. Although there have been many studies on structure learning with various types of data, the structure learning on the dynamic graph has not been explored yet, and thus we study the learning problem of node feature generation mechanism on such ubiquitous dynamic graph data. In a dynamic graph, we propose to simultaneously estimate contemporaneous relationships and time-lagged interaction relationships between the node features. These two kinds of relationships form a DAG, which could effectively characterize the feature generation process in a concise way. To learn such a DAG, we cast the learning problem as a continuous score-based optimization problem, which consists of a differentiable score function to measure the validity of the learned DAGs and a smooth acyclicity constraint to ensure the acyclicity of the learned DAGs. These two components are translated into an unconstraint augmented Lagrangian objective which could be minimized by mature continuous optimization techniques. The resulting algorithm, named GraphNOTEARS, outperforms baselines on simulated data across a wide range of settings that may encounter in real-world applications. We also apply the proposed approach on two dynamic graphs constructed from the real-world Yelp dataset, demonstrating our method could learn the connections between node features, which conforms with the domain knowledge.
translated by 谷歌翻译
在许多科学领域,观察数据中的因果发现是一项重要但具有挑战性的任务。最近,一种称为宣传的非组合定向无环约束的方法将因果结构学习问题作为使用最小二乘损失的连续优化问题。尽管在标准高斯噪声假设下,最小二乘损耗函数是合理的,但如果假设不存在,则受到限制。在这项工作中,我们从理论上表明,违反高斯噪声假设将阻碍因果方向的识别,从而使因果强度以及线性案例中的噪声和噪声方差完全确定。在非线性情况下的噪音。因此,我们提出了一个更一般的基于熵的损失,理论上与任何噪声分布下的可能性得分一致。我们对合成数据和现实世界数据进行了广泛的经验评估,以验证所提出的方法的有效性,并表明我们的方法在结构锤距离,错误发现率和真实的正速率矩阵方面达到了最佳状态。
translated by 谷歌翻译
在非参数环境中,因果结构通常仅在马尔可夫等效性上可识别,并且出于因果推断的目的,学习马尔可夫等效类(MEC)的图形表示很有用。在本文中,我们重新审视了贪婪的等效搜索(GES)算法,该算法被广泛引用为一种基于分数的算法,用于学习基本因果结构的MEC。我们观察到,为了使GES算法在非参数设置中保持一致,不必设计评估图的评分度量。取而代之的是,足以插入有条件依赖度量的一致估计器来指导搜索。因此,我们提出了GES算法的重塑,该算法比基于标准分数的版本更灵活,并且很容易将自己带到非参数设置,并具有条件依赖性的一般度量。此外,我们提出了一种神经条件依赖性(NCD)度量,该措施利用深神经网络的表达能力以非参数方式表征条件独立性。我们根据标准假设建立了重新构架GES算法的最佳性,并使用我们的NCD估计器来决定条件独立性的一致性。这些结果共同证明了拟议的方法。实验结果证明了我们方法在因果发现中的有效性,以及使用我们的NCD度量而不是基于内核的措施的优势。
translated by 谷歌翻译
Estimating the structure of directed acyclic graphs (DAGs, also known as Bayesian networks) is a challenging problem since the search space of DAGs is combinatorial and scales superexponentially with the number of nodes. Existing approaches rely on various local heuristics for enforcing the acyclicity constraint. In this paper, we introduce a fundamentally different strategy: We formulate the structure learning problem as a purely continuous optimization problem over real matrices that avoids this combinatorial constraint entirely. This is achieved by a novel characterization of acyclicity that is not only smooth but also exact. The resulting problem can be efficiently solved by standard numerical algorithms, which also makes implementation effortless. The proposed method outperforms existing ones, without imposing any structural assumptions on the graph such as bounded treewidth or in-degree. Code implementing the proposed algorithm is open-source and publicly available at https://github.com/xunzheng/notears.
translated by 谷歌翻译
在学习从观察数据中学习贝叶斯网络的图形结构是描述和帮助了解复杂应用程序中的数据生成过程的关键,而任务由于其计算复杂性而构成了相当大的挑战。代表贝叶斯网络模型的定向非循环图(DAG)通常不会从观察数据识别,并且存在各种方法来估计其等价类。在某些假设下,流行的PC算法可以通过测试条件独立(CI)一致地始终恢复正确的等价类,从边际独立关系开始,逐步扩展调节集。这里,我们提出了一种通过利用协方差与精密矩阵之间的反向关系来执行PC算法内的CI测试的新颖方案。值得注意的是,精密矩阵的元素与高斯数据的部分相关性。然后,我们的算法利用对协方差和精密矩阵的块矩阵逆转,同时对互补(或双)调节集的部分相关性进行测试。因此,双PC算法的多个CI测试首先考虑边缘和全阶CI关系并逐步地移动到中心顺序。仿真研究表明,双PC算法在运行时和恢复底层网络结构方面都优于经典PC算法。
translated by 谷歌翻译
因果发现旨在从观察数据中学习因果图。迄今为止,大多数因果发现方法需要将数据存储在中央服务器中。但是,数据所有者逐渐拒绝分享他们的个性化数据以避免隐私泄漏,使这项任务通过切断第一步来更加麻烦。出现拼图:$ \ texit {如何从分散数据的原因关系推断出来自分散数据的因果关系?} $本文,具有数据的添加性噪声模型假设,我们参加了开发基于渐变的学习框架命名为DAG共享的渐变学习框架联邦因果发现(DS-FCD),可以在不直接触摸本地数据的情况下学习因果图,并自然地处理数据异质性。 DS-FCD受益于每个本地模型的两级结构。第一级别学习因果图并与服务器通信以获取来自其他客户端的模型信息,而第二级别近似于因果机制,并且从其自身的数据逐步更新以适应数据异质性。此外,DS-FCD通过利用平等的非循环性约束,将整体学习任务制定为连续优化问题,这可以通过梯度下降方法自然地解决。对合成和现实世界数据集的广泛实验验证了所提出的方法的功效。
translated by 谷歌翻译
因果推断对于跨业务参与,医疗和政策制定等领域的数据驱动决策至关重要。然而,关于因果发现的研究已经与推理方法分开发展,从而阻止了两个领域方法的直接组合。在这项工作中,我们开发了深层端到端因果推理(DECI),这是一种基于流动的非线性添加噪声模型,该模型具有观察数据,并且可以执行因果发现和推理,包括有条件的平均治疗效果(CATE) )估计。我们提供了理论上的保证,即DECI可以根据标准因果发现假设恢复地面真实因果图。受应用影响的激励,我们将该模型扩展到具有缺失值的异质,混合型数据,从而允许连续和离散的治疗决策。我们的结果表明,与因果发现的相关基线相比,DECI的竞争性能和(c)在合成数据集和因果机器学习基准测试基准的一千多个实验中,跨数据类型和缺失水平进行了估计。
translated by 谷歌翻译
结构性因果模型(SCM)提供了一种原则方法,可以从经济学到医学的学科中的观察和实验数据中识别因果关系。但是,通常以图形模型表示的SCM不仅可以依靠数据,而要支持域知识的支持。在这种情况下,一个关键的挑战是缺乏以系统的方式将先验(背景知识)编码为因果模型的方法学框架。我们提出了一个称为因果知识层次结构(CKH)的抽象,用于将先验编码为因果模型。我们的方法基于医学中“证据水平”的基础,重点是对因果信息的信心。使用CKH,我们提出了一个方法学框架,用于编码来自各种信息源的因果研究,并将它们组合起来以得出SCM。我们在模拟数据集上评估了我们的方法,并与敏感性分析的地面真实因果模型相比,证明了整体性能。
translated by 谷歌翻译
从观察数据中恢复基本的定向无环形结构(DAG),由于DAG受限的优化问题的组合性质,因此极具挑战性。最近,通过将DAG约束将DAG的限制定义为平滑的平等性,通常基于邻接矩阵上的多项式,将DAG学习作为连续优化问题。现有方法将非常小的系数放在高阶多项式术语上以进行稳定,因为它们认为由于数字爆炸而导致高阶项上的大系数有害。相反,我们发现,高阶术语上的大系数对DAG学习有益,当邻接矩阵的光谱辐射小时,高阶术语的较大系数可以比小尺寸近似于小的限制。同行。基于此,我们提出了一种具有有效截短的矩阵功率迭代的新型DAG学习方法,以近似于基于几何序列的DAG约束。从经验上讲,我们的DAG学习方法在各种环境中的表现优于先前的最新方法,在结构锤距离上通常以3倍或以上的倍数。
translated by 谷歌翻译
我们建议在没有观察到的变量的情况下,提出基于订购的方法,用于学习结构方程模型(SEM)的最大祖先图(MAG),直到其Markov等效类(MEC)。文献中的现有基于订购的方法通过学习因果顺序(C-order)恢复图。我们提倡一个名为“可移动顺序”(R-rorder)的新颖订单,因为它们比结构学习的C端口有利。这是因为R-orders是适当定义的优化问题的最小化器,该问题可以准确解决(使用强化学习方法)或大约(使用爬山搜索)。此外,R-orders(与C-orders不同)在MEC中的所有图表中都是不变的,并将C-orders包括为子集。鉴于一组R-orders通常明显大于C-orders集,因此优化问题更容易找到R级而不是C级。我们评估了在现实世界和随机生成的网络上提出的方法的性能和可伸缩性。
translated by 谷歌翻译
State-of-the-art causal discovery methods usually assume that the observational data is complete. However, the missing data problem is pervasive in many practical scenarios such as clinical trials, economics, and biology. One straightforward way to address the missing data problem is first to impute the data using off-the-shelf imputation methods and then apply existing causal discovery methods. However, such a two-step method may suffer from suboptimality, as the imputation algorithm may introduce bias for modeling the underlying data distribution. In this paper, we develop a general method, which we call MissDAG, to perform causal discovery from data with incomplete observations. Focusing mainly on the assumptions of ignorable missingness and the identifiable additive noise models (ANMs), MissDAG maximizes the expected likelihood of the visible part of observations under the expectation-maximization (EM) framework. In the E-step, in cases where computing the posterior distributions of parameters in closed-form is not feasible, Monte Carlo EM is leveraged to approximate the likelihood. In the M-step, MissDAG leverages the density transformation to model the noise distributions with simpler and specific formulations by virtue of the ANMs and uses a likelihood-based causal discovery algorithm with directed acyclic graph constraint. We demonstrate the flexibility of MissDAG for incorporating various causal discovery algorithms and its efficacy through extensive simulations and real data experiments.
translated by 谷歌翻译
模拟DAG模型可能表现出属性,也许无意中,使其结构识别和意外地影响结构学习算法。在这里,我们表明边缘方差往往沿着仿制性添加添加剂噪声模型的因果顺序增加。我们将Varsortable介绍为衡量衡量边际差异和因果顺序的秩序之间的协议。对于通常采样的图形和模型参数,我们表明,一些连续结构学习算法的显着性能可以通过高的Varsortable解释,并通过简单的基线方法匹配。然而,这种性能可能不会转移到真实世界的数据,其中VARS使性可能是中等或取决于测量尺度的选择。在标准化数据上,相同的算法无法识别地面真理DAG或其Markov等价类。虽然标准化在边缘方差中删除了模式,但我们表明,数据产生过程,其产生高VILS使性也留下了即使在标准化之后也可以利用不同的协方差模式。我们的调查结果挑战了独立绘制参数的通用基准的重要性。代码可在https://github.com/scriddie/varsortable获得。
translated by 谷歌翻译
我们对无监督的结构学习感兴趣,特别关注有向的无环图形(DAG)模型。推断这些结构所需的计算通常在变量量中是超指定性的,因为推理需要扫描组合较大的潜在结构空间。也就是说,直到最近允许使用可区分的度量标准搜索此空间,大幅度缩短了搜索时间。尽管该技术(名为Notears)被广泛认为是在DAG-DISCOVERY中的开创性工作,但它承认了一个重要的属性,有利于可怜性:可运输性。在我们的论文中,我们介绍了D型结构,该结构通过新颖的结构和损失功能在发现的结构中恢复可运输性,同时保持完全可区分。由于D型结构仍然可区分,因此可以像以前使用Notears一样轻松地采用我们的方法。在我们的实验中,我们根据边缘准确性和结构锤距离验证了D结构。
translated by 谷歌翻译
Inferring causal structure poses a combinatorial search problem that typically involves evaluating structures with a score or independence test. The resulting search is costly, and designing suitable scores or tests that capture prior knowledge is difficult. In this work, we propose to amortize causal structure learning. Rather than searching over structures, we train a variational inference model to directly predict the causal structure from observational or interventional data. This allows our inference model to acquire domain-specific inductive biases for causal discovery solely from data generated by a simulator, bypassing both the hand-engineering of suitable score functions and the search over graphs. The architecture of our inference model emulates permutation invariances that are crucial for statistical efficiency in structure learning, which facilitates generalization to significantly larger problem instances than seen during training. On synthetic data and semisynthetic gene expression data, our models exhibit robust generalization capabilities when subject to substantial distribution shifts and significantly outperform existing algorithms, especially in the challenging genomics domain. Our code and models are publicly available at: https://github.com/larslorch/avici.
translated by 谷歌翻译