颅内动脉瘤(UIA)的生长是破裂的预测指标。因此,为了进一步的成像监视和治疗计划,重要的是能够预测UIA是否会根据初始基线飞行时间MRA(TOF-MRA)增长。众所周知,UIA的大小和形状是动脉瘤生长和/或破裂的预测指标。我们对使用网状卷积神经网络进行基线TOF-MRA的未来UIA增长预测进行了可行性研究。我们包括151个TOF-MRA,其中169个UIA基于生长的临床定义,其中49个UIA被归类为生长,而120个UIA被归类为稳定(随访扫描中的大小> 1 mm)。从TOF-MRAS分割了UIA,并自动生成网格。我们研究了仅UIA网格的输入和包括UIA和周围母体血管在内的利益区域(ROI)网格。我们开发了一个分类模型来预测将增长或保持稳定的UIA。该模型由一个网状卷积神经网络组成,其中包括描述表面拓扑的形状指数和曲面的其他新型输入边缘特征。研究了输入边缘中点坐标是否影响模型性能。具有最高AUC(63.8%)的模型用于生长预测,使用了具有输入边缘中点坐标特征的UIA网格(平均F1得分= 62.3%,准确度= 66.9%,灵敏度= 57.3%,特异性= 70.8%)。我们提出了一个基于网状卷积神经网络的未来UIA增长预测模型,其结果有希望。
translated by 谷歌翻译
早期检测改善了胰腺导管腺癌(PDAC)中的预后,但挑战,因为病变通常很小,并且在对比增强的计算断层扫描扫描(CE-CT)上定义很差。深度学习可以促进PDAC诊断,但是当前模型仍然无法识别小(<2cm)病变。在这项研究中,最先进的深度学习模型用于开发用于PDAC检测的自动框架,专注于小病变。另外,研究了整合周围解剖学的影响。 CE-CT来自119个病理验证的PDAC患者的群组和123名没有PDAC患者的队列用于训练NNUNET用于自动病变检测和分割(\ TEXTIT {NNUNET \ _t})。训练了两种额外的鼻塞,以研究解剖学积分的影响:(1)分割胰腺和肿瘤(\ yryit {nnunet \ _tp}),(2)分割胰腺,肿瘤和多周围的解剖结构(\ textit {nnunet \_多发性硬化症})。外部可公开的测试集用于比较三个网络的性能。 \ Textit {nnunet \ _ms}实现了最佳性能,在整个测试集的接收器操作特性曲线下的区域为0.91,肿瘤的0.88 <2cm,显示最先进的深度学习可以检测到小型PDAC和解剖信息的好处。
translated by 谷歌翻译
Pneumonia, a respiratory infection brought on by bacteria or viruses, affects a large number of people, especially in developing and impoverished countries where high levels of pollution, unclean living conditions, and overcrowding are frequently observed, along with insufficient medical infrastructure. Pleural effusion, a condition in which fluids fill the lung and complicate breathing, is brought on by pneumonia. Early detection of pneumonia is essential for ensuring curative care and boosting survival rates. The approach most usually used to diagnose pneumonia is chest X-ray imaging. The purpose of this work is to develop a method for the automatic diagnosis of bacterial and viral pneumonia in digital x-ray pictures. This article first presents the authors' technique, and then gives a comprehensive report on recent developments in the field of reliable diagnosis of pneumonia. In this study, here tuned a state-of-the-art deep convolutional neural network to classify plant diseases based on images and tested its performance. Deep learning architecture is compared empirically. VGG19, ResNet with 152v2, Resnext101, Seresnet152, Mobilenettv2, and DenseNet with 201 layers are among the architectures tested. Experiment data consists of two groups, sick and healthy X-ray pictures. To take appropriate action against plant diseases as soon as possible, rapid disease identification models are preferred. DenseNet201 has shown no overfitting or performance degradation in our experiments, and its accuracy tends to increase as the number of epochs increases. Further, DenseNet201 achieves state-of-the-art performance with a significantly a smaller number of parameters and within a reasonable computing time. This architecture outperforms the competition in terms of testing accuracy, scoring 95%. Each architecture was trained using Keras, using Theano as the backend.
translated by 谷歌翻译
延迟的诊断联合性不稳定会导致踝关节的显着发病和关节炎的加速变化。使用3D体积测量值,重量计算机断层扫描(WBCT)已显示出有希望的早期和可靠检测分离出的集团不稳定性的潜力。尽管据报道这些测量值高度准确,但它们也依赖于经验,耗时,并且需要一种特定的3D测量软件工具,该工具导致临床医生仍然对传统的诊断方法表现出更大的兴趣。这项研究的目的是通过使用WBCT扫描来自动化3D体积解剖结构的3D体积评估来提高准确性,加速分析时间并减少观察者间偏置。我们使用了先前收集的单侧联合不稳定性患者的WBCT扫描进行了回顾性研究。评估了144个双侧踝WBCT扫描(48个不稳定,96个对照)。我们开发了三个深度学习(DL)模型,用于分析WBCT扫描以识别集团不稳定性。这三个模型包括两个最先进的模型(模型1-3D卷积神经网络[CNN]和具有长短期内存[LSTM]的模型2-CNN)和一个新的模型(模型3-差分差异我们在这项研究中介绍的CNN LSTM)。模型1未能分析WBCT扫描(F1得分= 0)。模型2仅错误分类两种情况(F1得分= 0.80)。模型3的表现优于模型2,并实现了几乎完美的性能,在对照组中仅误导了一个情况(F1得分= 0.91),因为不稳定,而比模型2更快。
translated by 谷歌翻译
病理系统地诱导形态学变化,从而提供了主要但不足以量化的可观察到诊断来源。该研究基于计算机断层扫描(CT)体积的形态特征(3D形态学)开发了病理状态的预测模型。开发了一个完整的工作流程,以进行网状提取和简化器官表面的工作流程,并与平均曲率和网状能的分布自动提取形态特征自动提取。然后对XGBoost监督分类器进行了训练和测试,以预测病理状态。该框架应用于肺结节恶性肿瘤的预测。在具有恶性肿瘤的NLST数据库的子集中,仅使用3D形态学证实了活检,将肺结节的分类模型分类为恶性与良性AUC的良性0.964。 (1)临床相关特征的其他三组经典特征经过训练和测试,AUC为0.58,(2)111辐射因子学的AUC为0.976,(3)含有结节大小,衰减和衰减和衰减的放射科医生地面真相(GT) Spiculation定性注释的AUC为0.979。我们还测试了Brock模型并获得0.826的AUC。将3D形态学和放射素学特征结合在一起,可以实现最新的结果,而AUC为0.978,其中3D形态学具有一些最高的预测能力。作为对公共独立队列的验证,将模型应用于LIDC数据集,3D形态学的AUC达到0.906,而3D型物体+放射线学则获得了0.958的AUC,在挑战中排名第二。它将曲率分布确定为预测肺结核恶性肿瘤的有效特征,并可以直接应用于任意计算机辅助诊断任务。
translated by 谷歌翻译
目的:要开发CADIA,一种基于区域提案网络的监督深度学习模型,耦合具有针对计算机断层造影(CTA)颅内动脉瘤(IA)的假阳性减少模块,并评估我们的模型的性能到类似的检测网络。方法:在此回顾性研究中,我们评估了来自两种独立的疾病患者的两种单独的患者患者的囊性IA> = 2.5mm。实施了两步模型:用于初始动脉瘤检测的3D区域提案网络,以及3D DENSENETSFOR虚假阳性降低以及对可疑IA的进一步确定。还进行了自由响应接收器操作特征(FROC)曲线和患者级性能,在既定的假每体积(FPPV)时呈现出误报。 Fisher的确切测试用于与类似的可用模型进行比较。结果:0.25和1 FPPV的Cadia的敏感性分别为63.9%和77.5%。我们的模型的性能随着尺寸和位置而变化,最佳性能是在5-10毫米和前沟通动脉的含量,敏感性分别为95.8%和94%的敏感性。与0.25 FPPV的可用型号相比,我们的模型显示出统计学上更高的患者级精度,灵敏度和特异性。在1 FPPV阈值下,我们的模型显示出更好的准确性和特异性(P <= 0.001)和等效灵敏度。结论:CADIA在IA的检测任务中表现出可比网络。添加假阳性还原模块是改善IA检测模型的可行步骤。
translated by 谷歌翻译
肺癌是癌症相关死亡率的主要原因。尽管新技术(例如图像分割)对于改善检测和较早诊断至关重要,但治疗该疾病仍然存在重大挑战。特别是,尽管治愈性分辨率增加,但许多术后患者仍会出现复发性病变。因此,非常需要预后工具,可以更准确地预测患者复发的风险。在本文中,我们探讨了卷积神经网络(CNN)在术前计算机断层扫描(CT)图像中存在的分割和复发风险预测。首先,随着医学图像分割的最新进展扩展,剩余的U-NET用于本地化和表征每个结节。然后,确定的肿瘤将传递给第二个CNN进行复发风险预测。该系统的最终结果是通过随机的森林分类器产生的,该分类器合成具有临床属性的第二个网络的预测。分割阶段使用LIDC-IDRI数据集,并获得70.3%的骰子得分。复发风险阶段使用了国家癌症研究所的NLST数据集,并获得了73.0%的AUC。我们提出的框架表明,首先,自动结节分割方法可以概括地为各种多任务系统提供管道,其次,深度学习和图像处理具有改善当前预后工具的潜力。据我们所知,这是第一个完全自动化的细分和复发风险预测系统。
translated by 谷歌翻译
计算机断层扫描(CT)图像对于诊断疾病已经非常重要。 CT扫描切片包含大量数据,可以使用正常的视觉检查使用必要的精度和速度来正确检查这些数据。需要计算机辅助的头骨骨折分类专家系统来协助医生。卷积神经网络(CNN)是图像分类最广泛的深度学习模型,因为在准确性和结果方面,它们通常超过其他模型。然后开发和测试CNN模型,并比较了几个卷积神经网络(CNN)结构。 RESNET50用于功能提取,并结合梯度提升的决策树机学习算法,可作为分类器分类的分类器,从脑CT扫描分为三个骨折类别,具有96%的最佳整体F1级评分,均为96%对于颅骨骨折的分类,得分为95%,平衡精度得分为94%,ROC AUC曲线为96%。
translated by 谷歌翻译
在肺结节表面上的尖锐/肺泡是肺癌恶性肿瘤的良好预测指标,因此是放射科医生的良好预测指标,作为标准化的肺-RADS临床评分标准的一部分。鉴于放射科医生的结节和2D切片评估的3D几何形状,手动调节/肺泡注释是一项繁琐的任务,因此,迄今为止,尚无公共数据集以探测这些临床报告在SOTA恶性预测中的重要性算法。作为本文的一部分,我们释放了一个大规模临床解释的放射线数据集,即Cirdataset,其中包含来自两个公共数据集的分段肺结节的956个放射学家QA/QC'QA/QC'spiculation/lobulation注释,Lidc-Idri(N = 883)(n = 883)(n = 883)(n = 883) lungx(n = 73)。我们还提出了一个基于多级Voxel2mesh扩展到节段结节的端到端深度学习模型(同时保留尖峰),对尖峰进行分类(尖锐/尖峰和弯曲/叶状/叶状)并执行恶性预测。先前的方法已经对LIDC和LUNGX数据集进行了恶性预测,但没有对任何临床报道/可操作的特征(由于已知的超参数敏感性问题,具有一般归因方案)。随着这种全面宣布的Cirdataset和端到端深度学习基线的发布,我们希望恶性预测方法可以验证其解释,对我们的基线进行基准测试,并提供临床上的见解。数据集,代码,预处理模型和Docker容器可在https://github.com/nadeemlab/cir上找到。
translated by 谷歌翻译
肺癌是全球癌症死亡的主要原因,肺腺癌是最普遍的肺癌形式。 EGFR阳性肺腺癌已被证明对TKI治疗的反应率很高,这是肺癌分子测试的基本性质。尽管目前的指南考虑必要测试,但很大一部分患者并未常规化,导致数百万的人未接受最佳治疗肺癌。测序是EGFR突变分子测试的黄金标准,但是结果可能需要数周的时间才能回来,这在时间限制的情况下并不理想。能够快速,便宜地检测EGFR突变的替代筛查工具的开发,同时保存组织以进行测序可以帮助减少受比较治疗的患者的数量。我们提出了一种多模式方法,该方法将病理图像和临床变量整合在一起,以预测EGFR突变状态,迄今为止最大的临床队列中的AUC为84%。这样的计算模型可以以很少的额外成本进行大部分部署。它的临床应用可以减少中国接受亚最佳治疗的患者数量53.1%,在美国将高达96.6%的患者减少96.6%。
translated by 谷歌翻译
对骨关节炎(OA)的磁共振成像(MRI)扫描的客观评估可以解决当前OA评估的局限性。 OA客观评估是必需的骨,软骨和关节液的分割。大多数提出的分割方法都不执行实例分割,并且遭受了类不平衡问题。这项研究部署了蒙版R-CNN实例分割并改进了IT(改进的面罩R-CNN(IMASKRCNN)),以获得与OA相关组织的更准确的广义分割。该方法的训练和验证是使用骨关节炎倡议(OAI)数据集的500次MRI膝盖和有症状髋关节OA患者的97次MRI扫描进行的。掩盖R-CNN的三个修改产生了iMaskRCNN:添加第二个Roialigned块,在掩码标先中添加了额外的解码器层,并通过跳过连接将它们连接起来。使用Hausdorff距离,骰子评分和变异系数(COV)评估结果。与面膜RCNN相比,iMaskRCNN导致骨骼和软骨分割的改善,这表明股骨的骰子得分从95%增加到98%,胫骨的95%到97%,股骨软骨的71%至80%,81%和81%胫骨软骨的%至82%。对于积液检测,iMaskRCNN 72%比MaskRCNN 71%改善了骰子。 Reader1和Mask R-CNN(0.33),Reader1和ImaskRCNN(0.34),Reader2和Mask R-CNN(0.22),Reader2和iMaskRCNN(0.29)之间的积液检测的COV值(0.34),读取器2和mask r-CNN(0.22)接近COV之间,表明人类读者与蒙版R-CNN和ImaskRCNN之间的一致性很高。蒙版R-CNN和ImaskRCNN可以可靠,同时提取与OA有关的不同规模的关节组织,从而为OA的自动评估构成基础。 iMaskRCNN结果表明,修改改善了边缘周围的网络性能。
translated by 谷歌翻译
快速准确地检测该疾病可以大大帮助减少任何国家医疗机构对任何大流行期间死亡率降低死亡率的压力。这项工作的目的是使用新型的机器学习框架创建多模式系统,该框架同时使用胸部X射线(CXR)图像和临床数据来预测COVID-19患者的严重程度。此外,该研究还提出了一种基于nom图的评分技术,用于预测高危患者死亡的可能性。这项研究使用了25种生物标志物和CXR图像,以预测意大利第一波Covid-19(3月至6月2020年3月至6月)在930名Covid-19患者中的风险。提出的多模式堆叠技术分别产生了89.03%,90.44%和89.03%的精度,灵敏度和F1分数,以识别低风险或高危患者。与CXR图像或临床数据相比,这种多模式方法可提高准确性6%。最后,使用多元逻辑回归的列线图评分系统 - 用于对第一阶段确定的高风险患者的死亡风险进行分层。使用随机森林特征选择模型将乳酸脱氢酶(LDH),O2百分比,白细胞(WBC)计数,年龄和C反应蛋白(CRP)鉴定为有用的预测指标。开发了五个预测因素参数和基于CXR图像的列函数评分,以量化死亡的概率并将其分为两个风险组:分别存活(<50%)和死亡(> = 50%)。多模式技术能够预测F1评分为92.88%的高危患者的死亡概率。开发和验证队列曲线下的面积分别为0.981和0.939。
translated by 谷歌翻译
胶质母细胞瘤多形状(GBM)是一种恶性脑癌,形成约占Al脑和中枢神经系统(CNS)癌症的48%。据估计,由于GBM,美国每年发生超过13,000人死亡,使得具有可能导致可预测和有效的治疗的早期诊断系统至关重要。 GBM诊断后最常见的治疗方法是化疗,通过将迅速的分割细胞发送到凋亡。然而,当MgMT启动子序列甲基化时,这种形式的治疗无效,并且导致严重的副作用降低患者生存性。因此,重要的是能够通过基于非侵入性磁共振成像(MRI)的机器学习(ML)模型来鉴定MGMT启动子甲基化状态。这是使用脑肿瘤分割(BRALS)2021数据集完成的,该数据集最近用于国际摇臂竞争。我们开发了四种初级模型 - 两个辐射模型和两个CNN型号 - 每次解决具有逐步改进的二进制分类任务。我们构建了一种称为中间状态发生器称为中间状态发生器的新型ML模型,用于归一化所有MRI扫描的切片厚度。通过进一步的改进,我们最好的模型能够显着达到性能(P <0.05 $),比最佳性能的滑动模型更好,平均交叉验证精度增加6%。这种改进可能导致更明智的化疗选择作为治疗选择,每年延长成千上万的GBM患者的生命。
translated by 谷歌翻译
结构磁共振成像研究表明,大脑解剖异常与早产儿的认知缺陷有关。脑成熟和几何特征可以与机器学习模型一起使用,以预测以后的神经发育缺陷。但是,传统的机器学习模型将遭受较大的功能比率(即大量功能,但少数实例/样本)。合奏学习是一种范式,从战略上生成和集成了机器学习分类器库,并已成功地用于各种预测性建模问题,以提高模型性能。属性(即功能)包装方法是最常用的特征分区方案,它随机和反复从整个功能集中绘制特征子集。尽管属性装袋方法可以有效地降低特征维度以处理大型功能与实用比率,但它缺乏对域知识和特征之间的潜在关系的考虑。在这项研究中,我们提出了一种新型的本体论引导属性分区(OAP)方法,以通过考虑特征之间的特定于域的关系来更好地绘制特征子集。有了更好的分区功能子集,我们开发了一个合奏学习框架,该框架称为OAP汇总学习(OAP-EL)。我们应用了OAP-EL,以使用定量脑成熟和在非常早产的年龄在期限年龄获得的定量脑成熟和几何特征来预测2岁年龄的认知缺陷。我们证明,提出的OAP-EL方法显着优于同行集合学习和传统的机器学习方法。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
基于深入的学习的诊断性能随着更多的注释数据而增加,但手动注释是大多数领域的瓶颈。专家在临床常规期间评估诊断图像,并在报告中写出他们的调查结果。基于临床报告的自动注释可以克服手动标记瓶颈。我们假设可以使用这些报告的稀疏信息引导的模型预测来生成用于检测任务的密度注释。为了证明疗效,我们在放射学报告中临床显着发现的数量指导的临床上显着的前列腺癌(CSPCA)注释。我们包括7,756个前列腺MRI检查,其中3,050人被手动注释,4,706次自动注释。我们对手动注释的子集进行了自动注释质量:我们的得分提取正确地确定了99.3 \%$ 99.3 \%$ 99.3 \%$的CSPCA病变数量,我们的CSPCA分段模型正确地本地化了83.8 \ PM 1.1 \%$的病变。我们评估了来自外部中心的300名检查前列腺癌检测表现,具有组织病理学证实的基础事实。通过自动标记的考试增强培训集改善了在接收器的患者的诊断区域,从$ 88.1 \ pm 1.1 \%$至89.8 \ pm 1.0 \%$($ p = 1.2 \ cdot 10 ^ { - 4} $ )每案中的一个错误阳性的基于病变的敏感性,每案件从79.2美元2.8 \%$ 85.4 \ PM 1.9 \%$($ P <10 ^ { - 4} $),以$ alm \ pm std。$超过15个独立运行。这种改进的性能展示了我们报告引导的自动注释的可行性。源代码在https://github.com/diagnijmegen/report-guiding-annotation上公开可用。最佳的CSPCA检测算法在https://grand-challenge.org/algorithms/bpmri-cspca-detection-report-guiding-annotations/中提供。
translated by 谷歌翻译
Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar fields.
translated by 谷歌翻译
$ \ mathbf {perive} $:使用人工智能(AI)到:(1)从相对较大的人群中利用视神经头(ONH)的生物力学知识; (2)评估ONH的单个光学相干断层扫描(OCT)扫描的稳健性; (3)确定哪些关键的三维(3D)结构特征使给定的ONH稳健。 $ \ Mathbf {Design} $:回顾性横断面研究。 $ \ mathbf {Methods} $:316个受试者通过Ophthalmo-Dynamometry在急性眼内和之后与OCT成像。然后将IOP诱导的椎板胶状变形映射为3D,并用于对ONH进行分类。 LC变形高于4%的人被认为是脆弱的,而变形较低的人则较低4%。从这些数据中学习,我们比较了三种AI算法,以严格地从基线(未呈现的)OCT卷中预测鲁棒性:(1)随机森林分类器; (2)自动编码器; (3)动态图CNN(DGCNN)。后一种算法还使我们能够确定哪些关键的3D结构特征使给定的智能稳定。 $ \ mathbf {结果} $:所有3种方法都能够单独预测3D结构信息的稳健性,而无需执行生物力学测试。 DGCNN(接收器操作曲线下的区域[AUC]:0.76 $ \ pm $ 0.08)的表现优于自动编码器(AUC:0.70 $ \ pm $ 0.07)和随机森林分类器(AUC:0.69 $ \ pm $ 0.05)。有趣的是,为了评估稳健性,DGCNN主要使用了巩膜和LC插入部位的信息。 $ \ mathbf {结论} $:我们提出了一种AI驱动的方法,可以仅从ONH的单个OCT扫描中评估给定ONH的稳健性,而无需进行生物力学测试。纵向研究应确定ONH鲁棒性是否可以帮助我们确定快速的视野损失进展者。
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译
Despite high global prevalence of hepatic steatosis, no automated diagnostics demonstrated generalizability in detecting steatosis on multiple international datasets. Traditionally, hepatic steatosis detection relies on clinicians selecting the region of interest (ROI) on computed tomography (CT) to measure liver attenuation. ROI selection demands time and expertise, and therefore is not routinely performed in populations. To automate the process, we validated an existing artificial intelligence (AI) system for 3D liver segmentation and used it to purpose a novel method: AI-ROI, which could automatically select the ROI for attenuation measurements. AI segmentation and AI-ROI method were evaluated on 1,014 non-contrast enhanced chest CT images from eight international datasets: LIDC-IDRI, NSCLC-Lung1, RIDER, VESSEL12, RICORD-1A, RICORD-1B, COVID-19-Italy, and COVID-19-China. AI segmentation achieved a mean dice coefficient of 0.957. Attenuations measured by AI-ROI showed no significant differences (p = 0.545) and a reduction of 71% time compared to expert measurements. The area under the curve (AUC) of the steatosis classification of AI-ROI is 0.921 (95% CI: 0.883 - 0.959). If performed as a routine screening method, our AI protocol could potentially allow early non-invasive, non-pharmacological preventative interventions for hepatic steatosis. 1,014 expert-annotated liver segmentations of patients with hepatic steatosis annotations can be downloaded here: https://drive.google.com/drive/folders/1-g_zJeAaZXYXGqL1OeF6pUjr6KB0igJX.
translated by 谷歌翻译