在本文中,我们提出了一种算法,以在动态场景的两对图像之间插值。尽管在过去的几年中,在框架插值方面取得了重大进展,但当前的方法无法处理具有亮度和照明变化的图像,即使很快将图像捕获也很常见。我们建议通过利用现有的光流方法来解决这个问题,这些方法对照明的变化非常健壮。具体而言,使用使用现有预训练的流动网络估算的双向流,我们预测了从中间帧到两个输入图像的流。为此,我们建议将双向流编码为由超网络提供动力的基于坐标的网络,以获得跨时间的连续表示流。一旦获得了估计的流,我们就会在现有的混合网络中使用它们来获得最终的中间帧。通过广泛的实验,我们证明我们的方法能够比最新的框架插值算法产生明显更好的结果。
translated by 谷歌翻译
视频框架插值(VFI)实现了许多可能涉及时间域的重要应用程序,例如慢运动播放或空间域,例如停止运动序列。我们专注于以前的任务,其中关键挑战之一是在存在复杂运动的情况下处理高动态范围(HDR)场景。为此,我们探索了双曝光传感器的可能优势,这些传感器很容易提供尖锐的短而模糊的长曝光,这些曝光是空间注册并在时间上对齐的两端。这样,运动模糊会在场景运动上暂时连续的信息,这些信息与尖锐的参考结合在一起,可以在单个相机拍摄中进行更精确的运动采样。我们证明,这促进了VFI任务中更复杂的运动重建以及HDR框架重建,迄今为止仅考虑到最初被捕获的框架,而不是插值之间的框架。我们设计了一个在这些任务中训练的神经网络,这些神经网络明显优于现有解决方案。我们还提出了一个场景运动复杂性的度量,该指标在测试时间提供了对VFI方法的性能的重要见解。
translated by 谷歌翻译
Given two consecutive frames, video interpolation aims at generating intermediate frame(s) to form both spatially and temporally coherent video sequences. While most existing methods focus on single-frame interpolation, we propose an end-to-end convolutional neural network for variable-length multi-frame video interpolation, where the motion interpretation and occlusion reasoning are jointly modeled. We start by computing bi-directional optical flow between the input images using a U-Net architecture. These flows are then linearly combined at each time step to approximate the intermediate bi-directional optical flows. These approximate flows, however, only work well in locally smooth regions and produce artifacts around motion boundaries. To address this shortcoming, we employ another U-Net to refine the approximated flow and also predict soft visibility maps. Finally, the two input images are warped and linearly fused to form each intermediate frame. By applying the visibility maps to the warped images before fusion, we exclude the contribution of occluded pixels to the interpolated intermediate frame to avoid artifacts. Since none of our learned network parameters are time-dependent, our approach is able to produce as many intermediate frames as needed. To train our network, we use 1,132 240-fps video clips, containing 300K individual video frames. Experimental results on several datasets, predicting different numbers of interpolated frames, demonstrate that our approach performs consistently better than existing methods.
translated by 谷歌翻译
translated by 谷歌翻译
我们提出了一种用于视频帧插值(VFI)的实时中流估计算法。许多最近的基于流的VFI方法首先估计双向光学流,然后缩放并将它们倒转到近似中间流动,导致运动边界上的伪像。RIFE使用名为IFNET的神经网络,可以直接估计中间流量从粗细流,速度更好。我们设计了一种用于训练中间流动模型的特权蒸馏方案,这导致了大的性能改善。Rife不依赖于预先训练的光流模型,可以支持任意时间的帧插值。实验表明,普里埃雷在若干公共基准上实现了最先进的表现。\ url {https://github.com/hzwer/arxiv2020-rife}。
translated by 谷歌翻译
我们提出了一种称为基于DNN的基于DNN的框架,称为基于增强的相关匹配的视频帧插值网络,以支持4K的高分辨率,其具有大规模的运动和遮挡。考虑到根据分辨率的网络模型的可扩展性,所提出的方案采用经常性金字塔架构,该架构分享每个金字塔层之间的参数进行光学流量估计。在所提出的流程估计中,通过追踪具有最大相关性的位置来递归地改进光学流。基于前扭曲的相关匹配可以通过排除遮挡区域周围的错误扭曲特征来提高流量更新的准确性。基于最终双向流动,使用翘曲和混合网络合成任意时间位置的中间帧,通过细化网络进一步改善。实验结果表明,所提出的方案在4K视频数据和低分辨率基准数据集中占据了之前的工作,以及具有最小型号参数的客观和主观质量。
translated by 谷歌翻译
A difficult example for video frame interpolation. Our approach produces a high-quality result in spite of the delicate flamingo leg that is subject to large motion. This is a video figure that is best viewed using Adobe Reader.
translated by 谷歌翻译
可以通过定期预测未来的框架以增强虚拟现实应用程序中的用户体验,从而解决了低计算设备上图形渲染高帧速率视频的挑战。这是通过时间视图合成(TVS)的问题来研究的,该问题的目标是预测给定上一个帧的视频的下一个帧以及上一个和下一个帧的头部姿势。在这项工作中,我们考虑了用户和对象正在移动的动态场景的电视。我们设计了一个将运动解散到用户和对象运动中的框架,以在预测下一帧的同时有效地使用可用的用户运动。我们通过隔离和估计过去框架的3D对象运动,然后推断它来预测对象的运动。我们使用多平面图像(MPI)作为场景的3D表示,并将对象运动作为MPI表示中相应点之间的3D位移建模。为了在估计运动时处理MPI中的稀疏性,我们将部分卷积和掩盖的相关层纳入了相应的点。然后将预测的对象运动与给定的用户或相机运动集成在一起,以生成下一帧。使用不合格的填充模块,我们合成由于相机和对象运动而发现的区域。我们为动态场景的电视开发了一个新的合成数据集,该数据集由800个以全高清分辨率组成的视频组成。我们通过数据集和MPI Sintel数据集上的实验表明我们的模型优于文献中的所有竞争方法。
translated by 谷歌翻译
作为具有高时间分辨率的生物启发传感器,尖峰摄像机在真实应用中具有巨大的潜力,特别是在高速场景中的运动估计。然而,由于数据模式不同,基于帧的基于事件的方法并不适合从尖峰相机的尖峰流。为此,我们展示,Scflow,一种量身定制的深度学习管道,以估计来自尖峰流的高速场景中的光学流量。重要的是,引入了一种新的输入表示,其可以根据先前运动自适应地从尖峰流中自适应地移除运动模糊。此外,对于训练Scflow,我们为Spiking Camera的两组光学流量数据合成了两组光学流量数据,尖锐的东西和光处理的高速运动,分别表示为乘坐和PHM,对应于随机的高速和精心设计的场景。实验结果表明,SC流程可以预测不同高速场景中的尖峰流的光流。此外,Scflow显示了\真正的尖峰流的有希望的泛化。发布后,所有代码和构造数据集将发布。
translated by 谷歌翻译
Motion blur from camera shake is a major problem in videos captured by hand-held devices. Unlike single-image deblurring, video-based approaches can take advantage of the abundant information that exists across neighboring frames. As a result the best performing methods rely on the alignment of nearby frames. However, aligning images is a computationally expensive and fragile procedure, and methods that aggregate information must therefore be able to identify which regions have been accurately aligned and which have not, a task that requires high level scene understanding. In this work, we introduce a deep learning solution to video deblurring, where a CNN is trained end-toend to learn how to accumulate information across frames. To train this network, we collected a dataset of real videos recorded with a high frame rate camera, which we use to generate synthetic motion blur for supervision. We show that the features learned from this dataset extend to deblurring motion blur that arises due to camera shake in a wide range of videos, and compare the quality of results to a number of other baselines 1 .
translated by 谷歌翻译
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by A preliminary version of this paper appeared in the IEEE International Conference on Computer Vision (Baker et al. 2007).
translated by 谷歌翻译
隐式神经表示(INR)被出现为代表信号的强大范例,例如图像,视频,3D形状等。尽管它已经示出了能够表示精细细节的能力,但其效率尚未得到广泛研究数据表示。在INR中,数据以神经网络的参数的形式存储,并且通用优化算法通常不会利用信号中的空间和时间冗余。在本文中,我们建议通过明确地删除数据冗余来表示和压缩视频的新型INR方法。我们提出了跨视频帧和残差的主体剩余流场(NRFF)而不是存储原始RGB颜色,而不是存储原始RGB颜色。维护通常更光滑和更复杂的运动信息,比原始信号更少,需要更少的参数。此外,重用冗余像素值进一步提高了网络参数效率。实验结果表明,所提出的方法优于基线方法的显着边际。代码可用于https://github.com/daniel03c1/eff_video_repruseentation。
translated by 谷歌翻译
快速移动受试者的运动模糊是摄影中的一个长期问题,由于收集效率有限,尤其是在弱光条件下,在手机上非常常见。尽管近年来我们目睹了图像脱毛的巨大进展,但大多数方法都需要显着的计算能力,并且在处理高分辨率照片的情况下具有严重的局部动作。为此,我们根据手机的双摄像头融合技术开发了一种新颖的面部脱毛系统。该系统检测到主题运动以动态启用参考摄像头,例如,最近在高级手机上通常可用的Ultrawide Angle摄像机,并捕获带有更快快门设置的辅助照片。虽然主镜头是低噪音但模糊的,但参考镜头却很锋利,但嘈杂。我们学习ML模型,以对齐和融合这两张镜头,并在没有运动模糊的情况下输出清晰的照片。我们的算法在Google Pixel 6上有效运行,每次拍摄需要463毫秒的开销。我们的实验证明了系统对替代单片,多帧,面部特异性和视频脱张算法以及商业产品的优势和鲁棒性。据我们所知,我们的工作是第一个用于面部运动脱毛的移动解决方案,在各种运动和照明条件下,在数千个图像中可靠地工作。
translated by 谷歌翻译
高动态范围(HDR)成像在现代数字摄影管道中具有根本重要性,并且尽管在图像上变化照明,但仍用于生产具有良好暴露区域的高质量照片。这通常通过在不同曝光时拍摄多个低动态范围(LDR)图像来实现。然而,由于补偿不良的运动导致人工制品如重影,过度暴露的地区和未对准误差。在本文中,我们提出了一种新的HDR成像技术,可以专门模拟对准和曝光不确定性以产生高质量的HDR结果。我们介绍了一种使用HDR感知的HDR感知的不确定性驱动的注意力映射来联合对齐和评估对齐和曝光可靠性的策略,该注意力映像鲁棒地将帧合并为单个高质量的HDR图像。此外,我们介绍了一种渐进式多级图像融合方法,可以以置换不变的方式灵活地合并任何数量的LDR图像。实验结果表明,我们的方法可以为最先进的高达0.8dB的PSNR改进,以及更好的细节,颜色和更少人工制品的主观改进。
translated by 谷歌翻译
高速,高分辨率的立体视频(H2-STEREO)视频使我们能够在细粒度上感知动态3D内容。然而,对商品摄像机的收购H2-STEREO视频仍然具有挑战性。现有的空间超分辨率或时间框架插值方法分别提供了缺乏时间或空间细节的折衷解决方案。为了减轻这个问题,我们提出了一个双摄像头系统,其中一台相机捕获具有丰富空间细节的高空间分辨率低框架速率(HSR-LFR)视频,而另一个摄像头则捕获了低空间分辨率的高架框架-Rate(LSR-HFR)视频带有光滑的时间细节。然后,我们设计了一个学习的信息融合网络(LIFNET),该网络利用跨摄像机冗余,以增强两种相机视图,从而有效地重建H2-STEREO视频。即使在大型差异场景中,我们也利用一个差异网络将时空信息传输到视图上,基于该视图,我们建议使用差异引导的LSR-HFR视图基于差异引导的流量扭曲,并针对HSR-LFR视图进行互补的扭曲。提出了特征域中的多尺度融合方法,以最大程度地减少HSR-LFR视图中闭塞引起的翘曲幽灵和孔。 LIFNET使用YouTube收集的高质量立体视频数据集以端到端的方式进行训练。广泛的实验表明,对于合成数据和摄像头捕获的真实数据,我们的模型均优于现有的最新方法。消融研究探讨了各个方面,包括时空分辨率,摄像头基线,摄像头解理,长/短曝光和应用程序,以充分了解其对潜在应用的能力。
translated by 谷歌翻译
滚动快门(RS)失真可以解释为在RS摄像机曝光期间,随着时间的推移从瞬时全局快门(GS)框架中挑选一排像素。这意味着每个即时GS帧的信息部分,依次是嵌入到行依赖性失真中。受到这一事实的启发,我们解决了扭转这一过程的挑战性任务,即从rs失真中的图像中提取未变形的GS框架。但是,由于RS失真与其他因素相结合,例如读数设置以及场景元素与相机的相对速度,因此仅利用临时相邻图像之间的几何相关性的型号,在处理数据中,具有不同的读数设置和动态场景的数据中遭受了不良的通用性。带有相机运动和物体运动。在本文中,我们建议使用双重RS摄像机捕获的一对图像,而不是连续的框架,而RS摄像机则具有相反的RS方向,以完成这项极具挑战性的任务。基于双重反转失真的对称和互补性,我们开发了一种新型的端到端模型,即IFED,以通过卢比时间对速度场的迭代学习来生成双重光流序列。广泛的实验结果表明,IFED优于天真的级联方案,以及利用相邻RS图像的最新艺术品。最重要的是,尽管它在合成数据集上进行了训练,但显示出在从现实世界中的RS扭曲的动态场景图像中检索GS框架序列有效。代码可在https://github.com/zzh-tech/dual-versed-rs上找到。
translated by 谷歌翻译
从视频中获得地面真相标签很具有挑战性,因为在像素流标签的手动注释非常昂贵且费力。此外,现有的方法试图将合成数据集的训练模型调整到真实的视频中,该视频不可避免地遭受了域差异并阻碍了现实世界应用程序的性能。为了解决这些问题,我们提出了RealFlow,这是一个基于期望最大化的框架,可以直接从任何未标记的现实视频中创建大规模的光流数据集。具体而言,我们首先估计一对视频帧之间的光流,然后根据预测流从该对中合成新图像。因此,新图像对及其相应的流可以被视为新的训练集。此外,我们设计了一种逼真的图像对渲染(RIPR)模块,该模块采用软磁性裂口和双向孔填充技术来减轻图像合成的伪像。在E-Step中,RIPR呈现新图像以创建大量培训数据。在M-Step中,我们利用生成的训练数据来训练光流网络,该数据可用于估计下一个E步骤中的光流。在迭代学习步骤中,流网络的能力逐渐提高,流量的准确性以及合成数据集的质量也是如此。实验结果表明,REALFLOW的表现优于先前的数据集生成方法。此外,基于生成的数据集,我们的方法与受监督和无监督的光流方法相比,在两个标准基准测试方面达到了最先进的性能。我们的代码和数据集可从https://github.com/megvii-research/realflow获得
translated by 谷歌翻译
我们提出了一种新型的基于网络的基于网络的HDR Duthosting方法,用于融合任意长度的动态序列。所提出的方法使用卷积和经常性架构来产生视觉上令人愉悦的重影的HDR图像。我们介绍了一个新的反复间谍架构,即自动门控内存(SGM)单元格,这胜过标准LSTM单元格,同时包含更少的参数并具有更快的运行时间。在SGM小区中,通过将门的输出乘以自身的函数来控制通过门的信息流。此外,我们在双向设置中使用两个SGM单元来提高输出质量。该方法的方法与现有的HDR Deghosting方法定量跨三个公共数据集相比,实现了最先进的性能,同时同时实现熔断器可变长度输入顺序的可扩展性而不需要重新训练。通过广泛的消融,我们证明了各个组件以拟议方法的重要性。该代码可在https://val.cds.iisc.ac.in.in/hdr/hdrrn/index.html中获得。
translated by 谷歌翻译
Standard video frame interpolation methods first estimate optical flow between input frames and then synthesize an intermediate frame guided by motion. Recent ap-proaches merge these two steps into a single convolution process by convolving input frames with spatially adaptive kernels that account for motion and re-sampling simultaneously. These methods require large kernels to handle large motion, which limits the number of pixels whose kernels can be estimated at once due to the large memory demand. To address this problem, this paper formulates frame interpolation as local separable convolution over input frames using pairs of 1D kernels. Compared to regular 2D kernels, the 1D kernels require significantly fewer parameters to be estimated. Our method develops a deep fully convolutional neural network that takes two input frames and estimates pairs of 1D kernels for all pixels simultaneously. Since our method is able to estimate kernels and synthesizes the whole video frame at once, it allows for the incorporation of perceptual loss to train the neural network to produce visually pleasing frames. This deep neural network is trained end-to-end using widely available video data without any human annotation. Both qualitative and quantitative experiments show that our method provides a practical solution to high-quality video frame interpolation.
translated by 谷歌翻译
Figure 1: Our method can synthesize novel views in both space and time from a single monocular video of a dynamic scene. Here we show video results with various configurations of fixing and interpolating view and time (left), as well as a visualization of the recovered scene geometry (right). Please view with Adobe Acrobat or KDE Okular to see animations.
translated by 谷歌翻译