我们提出了一个新型的基于流动合成的视觉致毒框架,从而为微型航空车辆(MAV)避免了远距离的障碍物(MAV)在高大的摩天大楼中飞行。最近的基于深度学习的框架使用光流进行高精度的视觉伺服。在本文中,我们探讨了一个问题:我们可以为这些高精度视觉服务方法设计替代流,从而导致避免障碍?我们重新审视显着性的概念,以识别其他竞争摩天大楼和建筑物之间的攻击线中的高层建筑物作为碰撞障碍。合成的流程用于取代显着对象分割掩码。该流程得以计算,以至于视觉伺服控制器在障碍物周围安全地操纵MAV。在这种方法中,我们使用基于多步跨凝结法(CEM)的伺服控制来实现流量收敛,从而导致避免障碍物。我们使用这种新颖的管道来成功,持久地进行高层建筑,并在模拟和现实的现实世界中实现目标。我们进行了广泛的实验,并将我们的方法与光流和基于短距离的障碍物回避方法进行比较,以证明所提出的框架的优点。可以在https://sites.google.com/view/munocular-obstacle/home上找到其他可视化。
translated by 谷歌翻译
避免障碍的广泛范围导致了许多基于计算机视觉的方法。尽管受欢迎,但这不是一个解决问题。使用相机和深度传感器的传统计算机视觉技术通常专注于静态场景,或依赖于障碍物的前沿。生物启发传感器的最新发展将事件相机作为动态场景的引人注目的选择。尽管这些传感器的基于帧的对应物具有许多优点,但是高动态范围和时间分辨率,因此基于事件的感知在很大程度上存在于2D中。这通常导致解决方案依赖于启发式和特定于特定任务。我们表明,在执行障碍物避免时,事件和深度的融合克服了每个单独的模型的故障情况。我们所提出的方法统一事件摄像机和LIDAR流,以估计未经现场几何或障碍物的先验知识的度量对抗。此外,我们还发布了一个基于事件的基于事件的数据集,具有超过700个扫描场景的六个可视流。
translated by 谷歌翻译
结合同时定位和映射(SLAM)估计和动态场景建模可以高效地在动态环境中获得机器人自主权。机器人路径规划和障碍避免任务依赖于场景中动态对象运动的准确估计。本文介绍了VDO-SLAM,这是一种强大的视觉动态对象感知SLAM系统,用于利用语义信息,使得能够在场景中进行准确的运动估计和跟踪动态刚性物体,而无需任何先前的物体形状或几何模型的知识。所提出的方法识别和跟踪环境中的动态对象和静态结构,并将这些信息集成到统一的SLAM框架中。这导致机器人轨迹的高度准确估计和对象的全部SE(3)运动以及环境的时空地图。该系统能够从对象的SE(3)运动中提取线性速度估计,为复杂的动态环境中的导航提供重要功能。我们展示了所提出的系统对许多真实室内和室外数据集的性能,结果表明了对最先进的算法的一致和实质性的改进。可以使用源代码的开源版本。
translated by 谷歌翻译
本报告提出了微型航空车辆(MAV)自主导航的组合最优控制和感知框架在新颖的室内封闭环境中,专门用于车载传感器数据。我们使用模拟器的特权信息来为我们的感知系统生成3D空间中的最佳航点,以便我们学会模仿。培训的基于学习的感知模块又能够单独生成类似障碍避免从传感器数据(RGB + IMU)的航点。我们展示了框架跨IGIBSON模拟环境中的新颖场景的功效。
translated by 谷歌翻译
近年来,空中机器人背景下的高速导航和环境互动已成为几个学术和工业研究研究的兴趣领域。特别是,由于其若干环境中的潜在可用性,因此搜索和拦截(SAI)应用程序造成引人注目的研究区域。尽管如此,SAI任务涉及有关感官权重,板载计算资源,致动设计和感知和控制算法的具有挑战性的发展。在这项工作中,已经提出了一种用于高速对象抓握的全自动空中机器人。作为一个额外的子任务,我们的系统能够自主地刺穿位于靠近表面的杆中的气球。我们的第一款贡献是在致动和感觉水平的致动和感觉水平的空中机器人的设计,包括具有额外传感器的新型夹具设计,使机器人能够高速抓住物体。第二种贡献是一种完整的软件框架,包括感知,状态估计,运动计划,运动控制和任务控制,以便快速且强大地执行自主掌握任务。我们的方法已在一个具有挑战性的国际竞争中验证,并显示出突出的结果,能够在室外环境中以6米/分来自动搜索,遵循和掌握移动物体
translated by 谷歌翻译
The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed.
translated by 谷歌翻译
纳米四轮驱动器是小的,敏捷且廉价的平台,非常适合在狭窄,混乱的环境中部署。由于其有效载荷有限,这些车辆在处理能力方面受到了高度限制,从而使基于常规视觉的方法具有安全性和自主导航不兼容。最近的机器学习发展有望在低潜伏期处高性能感知,而专用的边缘计算硬件有可能增强这些有限设备的处理能力。在这项工作中,我们提出了Nanoflownet,这是一个轻巧的卷积神经网络,用于实时密集的光流估计,对边缘计算硬件。我们从最新的语义细分方面汲取灵感来设计该网络。此外,我们使用运动边界地面真实数据指导学习光流的学习,从而改善了性能而不会影响延迟。 MPI-SINTEL数据集的验证结果显示,鉴于其受限的体系结构,该网络的高性能。此外,我们通过将其部署在超低功率GAP8微处理器上,并将其应用于BitCraze Crazyflie,这是34 G纳米四轮摩托车的BitCraze Crazyflie,并将其应用于34 G Nano Quadcopter的BitCraze Crazyflie,从而成功地证明了纳米滚子的功能。
translated by 谷歌翻译
神经辐射场(NERF)最近被成为自然,复杂3D场景的代表的强大范例。 NERFS表示神经网络中的连续体积密度和RGB值,并通过射线跟踪从看不见的相机观点生成照片逼真图像。我们提出了一种算法,用于通过仅使用用于本地化的板载RGB相机表示为NERF的3D环境导航机器人。我们假设现场的NERF已经预先训练了离线,机器人的目标是通过NERF中的未占用空间导航到目标姿势。我们介绍了一种轨迹优化算法,其避免了基于NERF中的高密度区域的碰撞,其基于差分平整度的离散时间版本,其可用于约束机器人的完整姿势和控制输入。我们还介绍了基于优化的过滤方法,以估计单位的RGB相机中的NERF中机器人的6dof姿势和速度。我们将轨迹策划器与在线重新循环中的姿势过滤器相结合,以提供基于视觉的机器人导航管道。我们使用丛林健身房环境,教堂内部和巨石阵线导航的四轮车机器人,使用RGB相机展示仿真结果。我们还展示了通过教会导航的全向地面机器人,要求它重新定位以缩小差距。这项工作的视频可以在https://mikh3x4.github.io/nerf-navigation/找到。
translated by 谷歌翻译
纳米大小的无人机具有探索未知和复杂环境的巨大潜力。它们的尺寸很小,使它们敏捷且安全地靠近人类,并使他们能够穿过狭窄的空间。但是,它们的尺寸很小和有效载荷限制了板载计算和传感的可能性,从而使完全自主的飞行极具挑战性。迈向完全自主权的第一步是可靠的避免障碍,这在通用的室内环境中被证明在技术上具有挑战性。当前的方法利用基于视觉或一维传感器来支持纳米无人机感知算法。这项工作为基于新颖的毫米尺寸64像素多区域飞行时间(TOF)传感器和通用的无模型控制策略提供了轻巧的避免障碍系统。报告的现场测试基于Crazyflie 2.1,该测试由定制的多区TOF甲板扩展,总质量为35克。该算法仅使用0.3%的车载处理能力(210US执行时间),帧速率为15fps,为许多未来应用提供了绝佳的基础。运行提出的感知系统(包括抬起和操作传感器)所需的总无人机功率不到10%。在通用且以前未开发的室内环境中,提出的自动纳米大小无人机以0.5m/s的速度达到100%可靠性。所提出的系统释放出具有广泛数据集的开源,包括TOF和灰度摄像头数据,并与运动捕获中的无人机位置地面真相结合在一起。
translated by 谷歌翻译
Visually impaired people usually find it hard to travel independently in many public places such as airports and shopping malls due to the problems of obstacle avoidance and guidance to the desired location. Therefore, in the highly dynamic indoor environment, how to improve indoor navigation robot localization and navigation accuracy so that they guide the visually impaired well becomes a problem. One way is to use visual SLAM. However, typical visual SLAM either assumes a static environment, which may lead to less accurate results in dynamic environments or assumes that the targets are all dynamic and removes all the feature points above, sacrificing computational speed to a large extent with the available computational power. This paper seeks to explore marginal localization and navigation systems for indoor navigation robotics. The proposed system is designed to improve localization and navigation accuracy in highly dynamic environments by identifying and tracking potentially moving objects and using vector field histograms for local path planning and obstacle avoidance. The system has been tested on a public indoor RGB-D dataset, and the results show that the new system improves accuracy and robustness while reducing computation time in highly dynamic indoor scenes.
translated by 谷歌翻译
Underwater navigation presents several challenges, including unstructured unknown environments, lack of reliable localization systems (e.g., GPS), and poor visibility. Furthermore, good-quality obstacle detection sensors for underwater robots are scant and costly; and many sensors like RGB-D cameras and LiDAR only work in-air. To enable reliable mapless underwater navigation despite these challenges, we propose a low-cost end-to-end navigation system, based on a monocular camera and a fixed single-beam echo-sounder, that efficiently navigates an underwater robot to waypoints while avoiding nearby obstacles. Our proposed method is based on Proximal Policy Optimization (PPO), which takes as input current relative goal information, estimated depth images, echo-sounder readings, and previous executed actions, and outputs 3D robot actions in a normalized scale. End-to-end training was done in simulation, where we adopted domain randomization (varying underwater conditions and visibility) to learn a robust policy against noise and changes in visibility conditions. The experiments in simulation and real-world demonstrated that our proposed method is successful and resilient in navigating a low-cost underwater robot in unknown underwater environments. The implementation is made publicly available at https://github.com/dartmouthrobotics/deeprl-uw-robot-navigation.
translated by 谷歌翻译
对无人机系统(UAS)6G通信网络的供电解决方案的发动机解决方案非常广泛地增长了基于机器学习的自主模块和嵌入式图形处理单元(GPU)的广泛可用性。虽然这些技术已经彻底改变了UAS解决方案的可能性,但为UAS设计可操作,稳健的自主框架仍然是一个多方面和难题。在这项工作中,我们向US-IFLY提供了我们的小说,模块化框架,题为MR-IFLY,并讨论如何扩展它以启用6G Swarm解决方案。我们首先详细说明基于机器学习的UAS自主权与资源受限设备相关的挑战。接下来,我们深入描述,MR-IFLY的新颖深度估计和碰撞避免技术如何满足这些挑战。最后,我们描述了我们用来测量性能的各种评估标准,展示我们的优化机器视觉组件如何提供最多15倍的基线模型,并呈现MR-Ifly基于视觉碰撞避免技术的飞行演示视频。我们认为,这些经验结果通过提供独立的碰撞避免和导航能力来减少6G通信群中的节点之间的通信开销的候选者。
translated by 谷歌翻译
深度强化学习在基于激光的碰撞避免有效的情况下取得了巨大的成功,因为激光器可以感觉到准确的深度信息而无需太多冗余数据,这可以在算法从模拟环境迁移到现实世界时保持算法的稳健性。但是,高成本激光设备不仅很难为大型机器人部署,而且还表现出对复杂障碍的鲁棒性,包括不规则的障碍,例如桌子,桌子,椅子和架子,以及复杂的地面和特殊材料。在本文中,我们提出了一个新型的基于单眼相机的复杂障碍避免框架。特别是,我们创新地将捕获的RGB图像转换为伪激光测量,以进行有效的深度强化学习。与在一定高度捕获的传统激光测量相比,仅包含距离附近障碍的一维距离信息,我们提议的伪激光测量融合了捕获的RGB图像的深度和语义信息,这使我们的方法有效地有效障碍。我们还设计了一个功能提取引导模块,以加重输入伪激光测量,并且代理对当前状态具有更合理的关注,这有利于提高障碍避免政策的准确性和效率。
translated by 谷歌翻译
摄像机是自动化驱动系统中的主要传感器。它们提供高信息密度,并对检测为人类视野提供的道路基础设施线索最优。环绕式摄像机系统通常包括具有190 {\ DEG} +视野的四个鱼眼相机,覆盖在车辆周围的整个360 {\ DEG}集中在近场传感上。它们是低速,高精度和近距离传感应用的主要传感器,如自动停车,交通堵塞援助和低速应急制动。在这项工作中,我们提供了对这种视觉系统的详细调查,在可以分解为四个模块化组件的架构中,设置调查即可识别,重建,重建和重组。我们共同称之为4R架构。我们讨论每个组件如何完成特定方面,并提供一个位置论证,即它们可以协同组织以形成用于低速自动化的完整感知系统。我们通过呈现来自以前的作品的结果,并通过向此类系统提出架构提案来支持此参数。定性结果在视频中呈现在HTTPS://youtu.be/ae8bcof7777uy中。
translated by 谷歌翻译
本文提出了一种新颖的方法,用于在具有复杂拓扑结构的地下领域的搜索和救援行动中自动合作。作为CTU-Cras-Norlab团队的一部分,拟议的系统在DARPA SubT决赛的虚拟轨道中排名第二。与专门为虚拟轨道开发的获奖解决方案相反,该建议的解决方案也被证明是在现实世界竞争极为严峻和狭窄的环境中飞行的机上实体无人机的强大系统。提出的方法可以使无缝模拟转移的无人机团队完全自主和分散的部署,并证明了其优于不同环境可飞行空间的移动UGV团队的优势。该论文的主要贡献存在于映射和导航管道中。映射方法采用新颖的地图表示形式 - 用于有效的风险意识长距离计划,面向覆盖范围和压缩的拓扑范围的LTVMAP领域,以允许在低频道通信下进行多机器人合作。这些表示形式与新的方法一起在导航中使用,以在一般的3D环境中可见性受限的知情搜索,而对环境结构没有任何假设,同时将深度探索与传感器覆盖的剥削保持平衡。所提出的解决方案还包括一条视觉感知管道,用于在没有专用GPU的情况下在5 Hz处进行四个RGB流中感兴趣的对象的板上检测和定位。除了参与DARPA SubT外,在定性和定量评估的各种环境中,在不同的环境中进行了广泛的实验验证,UAV系统的性能得到了支持。
translated by 谷歌翻译
作为许多自主驾驶和机器人活动的基本组成部分,如自我运动估计,障碍避免和场景理解,单眼深度估计(MDE)引起了计算机视觉和机器人社区的极大关注。在过去的几十年中,已经开发了大量方法。然而,据我们所知,对MDE没有全面调查。本文旨在通过审查1970年至2021年之间发布的197个相关条款来弥补这一差距。特别是,我们为涵盖各种方法的MDE提供了全面的调查,介绍了流行的绩效评估指标并汇总公开的数据集。我们还总结了一些代表方法的可用开源实现,并比较了他们的表演。此外,我们在一些重要的机器人任务中审查了MDE的应用。最后,我们通过展示一些有希望的未来研究方向来结束本文。预计本调查有助于读者浏览该研究领域。
translated by 谷歌翻译
自主场景的曝光和探索,尤其是在本地化或沟通有限的区域,对于在未知场景中寻找目标有用,仍然是计算机导航中的一个具有挑战性的问题。在这项工作中,我们提出了一种用于实时环境探索的新方法,其唯一的要求是一个视觉上相似的数据集,用于预训练,场景中足够的照明以及用于环境感应的机上前瞻性RGB摄像机。与现有方法相反,我们的方法只需要一个外观(图像)才能做出一个良好的战术决定,因此在非成长,恒定的时间内起作用。两个方向的预测以像素为特征,称为goto和lookat像素,包括我们方法的核心。这些像素通过以下方式编码建议的飞行指令:goto像素定义了代理应以一个距离单位移动的方向,而Lookat像素定义了相机应在下一步中指向的方向。这些飞行的指导像素经过优化,以揭示当前未开发的区域的最多数量。我们的方法提出了一种新型的基于深度学习的导航方法,能够解决此问题并在更复杂的设置中证明其能力,即计算能力有限。此外,我们提出了一种生成面向导航数据集的方法,从而可以使用RGB和深度图像对我们的方法有效培训。在模拟器中进行的测试,评估了稀疏像素的推断过程的协调,以及旨在揭示区域并降低目标距离的2D和3D测试飞行取得了令人鼓舞的结果。与最先进的算法的比较表明,我们的方法能够表现出色,在测量每个相机姿势的新体素,最小距离目标距离,所见表面素的百分比和计算时间指标。
translated by 谷歌翻译
多年来,运动规划,映射和人类轨迹预测的单独领域显着提出。然而,在提供能够使移动操纵器能够执行全身运动并考虑移动障碍物的预测运动时,文献在提供实际框架方面仍然稀疏。基于以前的优化的运动计划方法,使用距离字段遭受更新环境表示所需的高计算成本。我们证明,与从头划痕计算距离场相比,GPU加速预测的复合距离场显着降低计算时间。我们将该技术与完整的运动规划和感知框架集成,其占据动态环境中的人类的预测运动,从而实现了包含预测动作的反应性和先发制人的运动规划。为实现这一目标,我们提出并实施了一种新颖的人类轨迹预测方法,该方法结合了基于轨迹优化的运动规划的意图识别。我们在现实世界丰田人类支持机器人(HSR)上验证了我们的由Onboard Camera的现场RGB-D传感器数据验证了我们的结果框架。除了在公开的数据集提供分析外,我们还释放了牛津室内人类运动(牛津-IHM)数据集,并在人类轨迹预测中展示了最先进的性能。牛津-IHM数据集是一个人类轨迹预测数据集,人们在室内环境中的兴趣区域之间行走。静态和机器人安装的RGB-D相机都观察了用运动捕获系统跟踪的人员。
translated by 谷歌翻译
无人驾驶飞机在当天变得越来越流行,对它们的申请越过科学和工业的界限,从航空摄影到包装交付再到灾难管理,从该技术中受益。但是在它们变得司空见惯之前,要解决的挑战要使它们可靠和安全。以下论文讨论了与无人驾驶飞机的精确着陆相关的挑战,包括传感和控制的方法及其在各种应用中的优点和缺点。
translated by 谷歌翻译
视觉惯性进程(VIO)被广泛用于多次计算机的状态估计,但在很少的视觉特征或过度攻击性飞行中的环境中起作用可能很差。在这项工作中,我们建议使用任何基于功能的VIO算法使用的多杆避免感知碰撞轨迹轨迹计划器。我们的方法能够以快速的速度飞行车辆到达目标位置,从而避免在未知的固定环境中遇到障碍,同时达到良好的VIO状态估计精度。拟议的规划师样本了一组最小的混蛋轨迹,并发现其中无冲突的轨迹,然后根据其目标和感知质量对其进行评估。特征及其位置的运动模糊都是为了感知质量。我们对功能运动模糊的新颖考虑使轨迹在具有不同光级别的环境下的侵略性自动适应。评估中的最佳轨迹是由车辆跟踪的,当从相机中收到新图像时,将以退缩的方式更新。仅对VIO做出了通用假设,因此计划器可以与各种现有系统一起使用。提出的方法可以在船上的小型嵌入式计算机上实时运行。我们通过在室内和室外环境中进行实验验证了我们提出的方法的有效性。与感知不可或缺的策划者相比,提议的计划者在摄像机的视野中保留了更多功能,并使飞行变得不那么侵略性,从而使VIO更加准确。它还减少了VIO失败,这是对感知态度计划者的发生,但并非针对拟议的计划者。还验证了拟议的规划师飞越密集障碍的能力。可以在https://youtu.be/qo3lzirpwtq上找到实验视频。
translated by 谷歌翻译