Federated learning (FL) is a promising way to allow multiple data owners (clients) to collaboratively train machine learning models without compromising data privacy. Yet, existing FL solutions usually rely on a centralized aggregator for model weight aggregation, while assuming clients are honest. Even if data privacy can still be preserved, the problem of single-point failure and data poisoning attack from malicious clients remains unresolved. To tackle this challenge, we propose to use distributed ledger technology (DLT) to achieve FLock, a secure and reliable decentralized Federated Learning system built on blockchain. To guarantee model quality, we design a novel peer-to-peer (P2P) review and reward/slash mechanism to detect and deter malicious clients, powered by on-chain smart contracts. The reward/slash mechanism, in addition, serves as incentives for participants to honestly upload and review model parameters in the FLock system. FLock thus improves the performance and the robustness of FL systems in a fully P2P manner.
translated by 谷歌翻译
我们提出了一个用于机器学习应用的基于区块链的安全数据交易市场的Omnilytics。利用omnilytics,许多分布式数据所有者可以贡献他们的私人数据,以集体培训某些型号所有者请求的ML模型,并获得数据贡献的补偿。 Omnilytics使这种模型培训能够同时为奇怪的数据所有者提供1)模型安全; 2)对奇怪的模型和数据所有者的数据安全; 3)对恶意数据所有者的弹性,为毒药模型培训提供有错误的结果; 4)打算逃避付款的恶意模型所有者的弹性。 Omnilytics被实施为一个区块链智能合同,以保证付款的原子。在omnilytics中,模型所有者将其模型分成私人和公共部分,并在合同上发布公共部分。通过执行合同,参与的数据所有者将其当地培训的模型安全地汇总以更新模型所有者的公共模式,并通过合同获得报销。我们在以Ethereum区块链中实施了Omnilytics的工作原型,并在各种参数组合下进行了广泛的实验,以测量其天然气成本,执行时间和模型质量。为了在MNIST数据集上训练CNN,MO能够将其模型精度从平板ChangchConsion Time的500毫秒内的62%提升到83%。这证明了Omnilytics对实际部署的有效性。
translated by 谷歌翻译
In terms of artificial intelligence, there are several security and privacy deficiencies in the traditional centralized training methods of machine learning models by a server. To address this limitation, federated learning (FL) has been proposed and is known for breaking down ``data silos" and protecting the privacy of users. However, FL has not yet gained popularity in the industry, mainly due to its security, privacy, and high cost of communication. For the purpose of advancing the research in this field, building a robust FL system, and realizing the wide application of FL, this paper sorts out the possible attacks and corresponding defenses of the current FL system systematically. Firstly, this paper briefly introduces the basic workflow of FL and related knowledge of attacks and defenses. It reviews a great deal of research about privacy theft and malicious attacks that have been studied in recent years. Most importantly, in view of the current three classification criteria, namely the three stages of machine learning, the three different roles in federated learning, and the CIA (Confidentiality, Integrity, and Availability) guidelines on privacy protection, we divide attack approaches into two categories according to the training stage and the prediction stage in machine learning. Furthermore, we also identify the CIA property violated for each attack method and potential attack role. Various defense mechanisms are then analyzed separately from the level of privacy and security. Finally, we summarize the possible challenges in the application of FL from the aspect of attacks and defenses and discuss the future development direction of FL systems. In this way, the designed FL system has the ability to resist different attacks and is more secure and stable.
translated by 谷歌翻译
Vanilla联合学习(FL)依赖于集中的全球聚合机制,并假设所有客户都是诚实的。这使得FL减轻单一失败和不诚实客户的挑战。由于FL和区块链的好处(例如,民主,激励性和不变性),FL的设计理念中的这些即将到来的挑战呼吁基于区块链的联邦学习(BFL)。但是,香草BFL中的一个问题是,它的功能不会以动态的方式遵循采用者的需求。此外,Vanilla BFL依赖于无法验证的客户的自我报告的贡献,例如数据大小,因为在FL中不允许检查客户的原始数据是否存在隐私问题。我们设计和评估了一种新型的BFL框架,并以更大的灵活性和激励机制(称为Fair-BFL)解决了香草BFL中确定的挑战。与现有作品相反,Fair-BFL通过模块化设计提供了前所未有的灵活性,使采用者可以按照动态的方式调整其业务需求的能力。我们的设计说明了BFL量化每个客户对全球学习过程的贡献的能力。这种量化提供了一个合理的指标,可以在联邦客户之间分配奖励,并帮助发现可能毒害全球模型的恶意参与者。
translated by 谷歌翻译
由于机器学习(ML)模型变得越来越复杂,其中一个中央挑战是它们在规模的部署,使得公司和组织可以通过人工智能(AI)创造价值。 ML中的新兴范式是一种联合方法,其中学习模型部分地将其交付给一组异构剂,允许代理与自己的数据一起培训模型。然而,模型的估值问题,以及数据/模型的协作培训和交易的激励问题,在文献中获得了有限的待遇。本文提出了一种在基于信任区块基网络上交易的ML模型交易的新生态系统。买方可以获得ML市场的兴趣模型,兴趣的卖家将本地计算花在他们的数据上,以增强该模型的质量。在这样做时,考虑了本地数据与训练型型号的质量之间的比例关系,并且通过分布式数据福价(DSV)估计了销售课程中的训练中的数据的估值。同时,通过分布式分区技术(DLT)提供整个交易过程的可信度。对拟议方法的广泛实验评估显示出具有竞争力的运行时间绩效,在参与者的激励方面下降了15 \%。
translated by 谷歌翻译
The advent of Federated Learning (FL) has ignited a new paradigm for parallel and confidential decentralized Machine Learning (ML) with the potential of utilizing the computational power of a vast number of IoT, mobile and edge devices without data leaving the respective device, ensuring privacy by design. Yet, in order to scale this new paradigm beyond small groups of already entrusted entities towards mass adoption, the Federated Learning Framework (FLF) has to become (i) truly decentralized and (ii) participants have to be incentivized. This is the first systematic literature review analyzing holistic FLFs in the domain of both, decentralized and incentivized federated learning. 422 publications were retrieved, by querying 12 major scientific databases. Finally, 40 articles remained after a systematic review and filtering process for in-depth examination. Although having massive potential to direct the future of a more distributed and secure AI, none of the analyzed FLF is production-ready. The approaches vary heavily in terms of use-cases, system design, solved issues and thoroughness. We are the first to provide a systematic approach to classify and quantify differences between FLF, exposing limitations of current works and derive future directions for research in this novel domain.
translated by 谷歌翻译
现在已经普遍研究了机器学习(ML),它已应用于现实生活的许多方面。然而,模型和数据问题仍然伴随着ML的发展。例如,传统ML型号的培训仅限于数据集的访问,这通常是专有的;发布的ML模型可能很快过时,无需更新新数据和持续培训;恶意数据贡献者可能上传错误标记的数据,导致不良培训结果;滥用私有数据和数据泄漏也退出。利用区块链,新兴和迅速发展的技术,可以有效地解决这些问题。在本文中,我们对协同ML和区块链的融合进行了调查。我们调查了这两种技术的不同组合方式及其应用领域。我们还讨论了当前研究及其未来方向的局限性。
translated by 谷歌翻译
弥补联邦学习(FL)模型的分散培训中所涉及的成本的激励措施是客户长期参与的关键刺激。但是,由于缺乏以下信息,请说服客户在FL上进行质量参与:(i)有关客户数据质量和属性的完整信息; (ii)客户数据贡献的价值; (iii)货币奖励优惠的可信赖机制。这通常会导致培训和沟通效率较差。尽管有几项工作着重于战略激励设计和客户选择以克服这个问题,但就针对预见的数字经济(包括Web 3.0)量身定制的总体设计存在一个重大的知识差距,同时同时实现了学习目标。为了解决这一差距,我们提出了一个基于贡献的令牌化激励方案,即\ texttt {fedToken},并得到区块链技术的支持,可确保在模型培训期间与其数据估值相对应的客户之间的公平分配。利用工程设计的基于Shapley的计划,我们首先近似模型聚合过程中本地模型的贡献,然后战略性地安排客户降低沟通循环的融合和锚定方式,以分配\ emph {负担得起的}代币在受限的货币预算下。广泛的模拟证明了我们提出的方法的功效。
translated by 谷歌翻译
通过参与大规模联合学习(FL)优化的设备的异构性质的激励,我们专注于由区块链(BC)技术赋予的异步服务器的FL解决方案。与主要采用的FL方法相比,假设同步操作,我们提倡一个异步方法,由此,模型聚合作为客户端提交本地更新。异步设置与具有异构客户端的实际大规模设置中的联合优化思路非常适合。因此,它可能导致通信开销和空闲时段的效率提高。为了评估启用了BC启用的FL的学习完成延迟,我们提供了基于批量服务队列理论的分析模型。此外,我们提供仿真结果以评估同步和异步机制的性能。涉及BC启用的流量的重要方面,例如网络大小,链路容量或用户要求,并分析并分析。随着我们的结果表明,同步设置导致比异步案例更高的预测精度。然而,异步联合优化在许多情况下提供了更低的延迟,从而在处理大数据集时成为一种吸引力的FL解决方案,严重的时序约束(例如,近实时应用)或高度不同的训练数据。
translated by 谷歌翻译
联合学习(FL)已成为工业物联网(IIOT)网络中数字双胞胎的必不可少的技术。但是,由于FL的主/奴隶结构,抵制主聚合器的单点失败以及恶意IIOT设备的攻击是非常具有挑战性的,同时保证了模型收敛速度和准确性。最近,区块链已进入FL系统,将范式转换为分散的方式,从而进一步提高了系统的安全性和学习可靠性。不幸的是,由于资源消耗庞大,交易量有限和高度沟通复杂性,区块链系统的传统共识机制和架构几乎无法处理大规模的FL任务并在IIT设备上运行。为了解决这些问题,本文提出了一个两层区块链驱动的FL系统,称为Chainfl,该系统将IIOT网络分为多个碎片,作为限制信息交换的标准层,并采用直接的无循环图(DAG) - 基于主链作为主链层,以实现平行和异步的横断面验证。此外,FL程序是定制的,以与区块链深入集成,并提出了修改的DAG共识机制来减轻由异常模型引起的失真。为了提供概念验证的实施和评估,部署了基于HyperLeDger面料和基于自发DAG的Mainchain的多个子链。广泛的实验结果表明,我们提出的链条系统以可接受和快速的训练效率(最高14%)和更强的鲁棒性(最多3次)优于现有的主要FL系统。
translated by 谷歌翻译
联邦学习一直是一个热门的研究主题,使不同组织的机器学习模型的协作培训在隐私限制下。随着研究人员试图支持更多具有不同隐私方法的机器学习模型,需要开发系统和基础设施,以便于开发各种联合学习算法。类似于Pytorch和Tensorflow等深度学习系统,可以增强深度学习的发展,联邦学习系统(FLSS)是等效的,并且面临各个方面的面临挑战,如有效性,效率和隐私。在本调查中,我们对联合学习系统进行了全面的审查。为实现流畅的流动和引导未来的研究,我们介绍了联合学习系统的定义并分析了系统组件。此外,我们根据六种不同方面提供联合学习系统的全面分类,包括数据分布,机器学习模型,隐私机制,通信架构,联合集市和联合的动机。分类可以帮助设计联合学习系统,如我们的案例研究所示。通过系统地总结现有联合学习系统,我们展示了设计因素,案例研究和未来的研究机会。
translated by 谷歌翻译
联合学习(FL)是一项新兴技术,可在保持数据分布和私密的同时向多个客户培训机器学习模型。根据参与的客户和模型培训量表,可以将联合学习分为两种类型:跨设备FL,客户通常是移动设备,客户编号可以达到数百万的规模;客户是组织或公司,并且客户编号通常很小(例如,一百之内)。尽管现有研究主要集中于跨设备FL,但本文旨在提供跨索洛FL的概述。更具体地说,我们首先讨论了交叉Silo FL的应用,并概述了其主要挑战。然后,我们通过关注与跨设备FL的联系和差异,对Cross-Silo FL挑战的现有方法进行系统的概述。最后,我们讨论了未来的方向和开放问题,值得社区的研究工作。
translated by 谷歌翻译
机器学习能力已成为跨行业,应用和行业各种解决方案的重要组成部分。许多组织试图利用其在业务服务中基于AI的解决方案,以释放提高效率并提高生产率。但是,如果缺乏用于AI模型培训,可伸缩性和维护的质量数据,可能会出现问题。我们建议通过公共区块链和智能合约利用以数据为中心的联合学习体系结构来克服这一重大问题。我们提出的解决方案提供了一个虚拟的公共市场,开发人员,数据科学家和AI工程师可以发布其模型,并协作创建和访问培训的质量数据。我们通过激励机制增强了数据质量和完整性,该机制奖励了数据贡献和验证。那些与所提出的框架相结合的人只有一个用户模拟训练数据集,平均每天100个输入,模型准确性约为4 \%。
translated by 谷歌翻译
随着对数据隐私和所有权的越来越关注,近年来见证了机器学习(ML)的范式转移。新兴的范式,联合学习(FL)引起了人们的关注,并已成为机器学习实现的新设计。 FL可以在中央服务器的协调下启用数据筒仓的ML模型培训,从而消除了开销,而无需共享原始数据。在本文中,我们对FL范式进行了综述,尤其是比较类型,网络结构和全局模型聚合方法。然后,我们对能源域中的FL应用进行了全面审查(请参阅本文的智能电网)。我们提供FL的主题分类,以解决各种与能源有关的问题,包括需求响应,识别,预测和联合优化。我们详细描述了分类法,并以讨论各个方面的讨论,包括其能源信息学应用程序中的挑战,机会和局限性,例如能源系统建模和设计,隐私和进化。
translated by 谷歌翻译
联合学习允许多个参与者在不公开数据隐私的情况下协作培训高效模型。但是,这种分布式的机器学习培训方法容易受到拜占庭客户的攻击,拜占庭客户通过修改模型或上传假梯度来干扰全球模型的训练。在本文中,我们提出了一种基于联邦学习(CMFL)的新型无服务器联合学习框架委员会机制,该机制可以确保算法具有融合保证的鲁棒性。在CMFL中,设立了一个委员会系统,以筛选上载已上传的本地梯度。 The committee system selects the local gradients rated by the elected members for the aggregation procedure through the selection strategy, and replaces the committee member through the election strategy.基于模型性能和防御的不同考虑,设计了两种相反的选择策略是为了精确和鲁棒性。广泛的实验表明,与典型的联邦学习相比,与传统的稳健性相比,CMFL的融合和更高的准确性比传统的稳健性,以分散的方法的方式获得了传统的耐受性算法。此外,我们理论上分析并证明了在不同的选举和选择策略下CMFL的收敛性,这与实验结果一致。
translated by 谷歌翻译
使用人工智能(AI)赋予无线网络中数据量的前所未有的数据量激增,为提供无处不在的数据驱动智能服务而开辟了新的视野。通过集中收集数据集和培训模型来实现传统的云彩中心学习(ML)基础的服务。然而,这种传统的训练技术包括两个挑战:(i)由于数据通信增加而导致的高通信和能源成本,(ii)通过允许不受信任的各方利用这些信息来威胁数据隐私。最近,鉴于这些限制,一种新兴的新兴技术,包括联合学习(FL),以使ML带到无线网络的边缘。通过以分布式方式培训全局模型,可以通过FL Server策划的全局模型来提取数据孤岛的好处。 FL利用分散的数据集和参与客户的计算资源,在不影响数据隐私的情况下开发广义ML模型。在本文中,我们介绍了对FL的基本面和能够实现技术的全面调查。此外,提出了一个广泛的研究,详细说明了无线网络中的流体的各种应用,并突出了他们的挑战和局限性。进一步探索了FL的疗效,其新兴的前瞻性超出了第五代(B5G)和第六代(6G)通信系统。本调查的目的是在关键的无线技术中概述了流动的技术,这些技术将作为建立对该主题的坚定了解的基础。最后,我们向未来的研究方向提供前进的道路。
translated by 谷歌翻译
物联网的最新研究已被广泛应用于工业实践,促进了数据和连接设备的指数增长。此后,各方通过某些数据共享策略将访问数据驱动的AI模型。但是,当前大多数培训程序都依赖于集中式数据收集策略和单个计算服务器。但是,这样的集中计划可能会导致许多问题。存储在集中数据库中的客户数据可能会被篡改,因此数据的出处和真实性是不能合理的。一旦出现上述安全问题,训练有素的AI模型的可信度将是值得怀疑的,甚至在测试阶段也可能产生不利的结果。最近,已经探索了行业4.0和Web 3.0的两种核心技术区块链和AI,以促进分散的AI培训策略。为了实现这一目的,我们提出了一种称为Appflchain的新系统体系结构,即基于Hyperledger织物的区块链和联合学习范式的集成体系结构。我们提出的新系统允许不同的各方共同培训AI模型,其客户或利益相关者由基于联盟区块链的网络连接。由于用户不需要向服务器共享敏感的个人信息,因此我们的新系统可以保持高度的安全性和隐私性。为了进行数值评估,我们模拟了现实世界的场景,以说明Appflchain的整个操作过程。仿真结果表明,利用联盟区块链和联邦学习的特征,Appflchain可以证明有利的特性,包括不可耐受性,可追溯性,隐私保护和可靠的决策。
translated by 谷歌翻译
联合学习(FL)是标准集中学习范式的最吸引人的替代方案之一,允许异质的设备集训练机器学习模型而无需共享其原始数据。但是,FL需要中央服务器来协调学习过程,从而引入潜在的可扩展性和安全性问题。在文献中,已经提出了诸如八卦联合学习(GFL)和支持区块链的联合学习(BFL)之类的无服务器的方法来减轻这些问题。在这项工作中,我们提出了这三种技术的完整概述,该技术根据整体性能指标进行比较,包括模型准确性,时间复杂性,交流开销,收敛时间和能源消耗。广泛的模拟活动允许进行定量分析。特别是,GFL能够节省18%的训练时间,68%的能源和51%的数据相对于CFL解决方案,但无法达到CFL的准确性水平。另一方面,BFL代表了一个可行的解决方案,用于以更高级别的安全性实施分散的学习,以额外的能源使用和数据共享为代价。最后,我们确定了两个分散的联合学习实施的开放问题,并就该新研究领域的潜在扩展和可能的研究方向提供见解。
translated by 谷歌翻译
联合学习(FL)是一个新兴的隐私机器学习范式(ML)。 FL的一种重要类型是Cross-Silo FL,它使少数组织能够通过在本地保密数据并在中央参数服务器上汇总权重来合作训练共享模型。但是,在实践中,中央服务器可能容易受到恶意攻击或软件故障的影响。为了解决这个问题,在本文中,我们提出了DEFL,这是一个新颖的分散体重聚集框架,用于交叉silo fl。 DEFL通过在每个参与节点上汇总权重来消除中央服务器,并且仅在所有节点之间维护并同步当前的训练回合的权重。我们使用Multi-Krum来启用诚实节点的正确权重,并使用HotStuff来确保训练循环数和权重的一致性。此外,我们从理论上分析了DEFL的拜占庭式容错,收敛性和复杂性。我们对两个广泛的公共数据集进行了广泛的实验,即CIFAR-10和Sentiment140,以评估DEFL的性能。结果表明,与最先进的分散FL方法相比,DEFL可以防御通用的威胁模型,并以最小的精度损失损失降低了100倍的存储空间和最多减少网络开销的12倍。
translated by 谷歌翻译
In recent years, mobile devices are equipped with increasingly advanced sensing and computing capabilities. Coupled with advancements in Deep Learning (DL), this opens up countless possibilities for meaningful applications, e.g., for medical purposes and in vehicular networks. Traditional cloudbased Machine Learning (ML) approaches require the data to be centralized in a cloud server or data center. However, this results in critical issues related to unacceptable latency and communication inefficiency. To this end, Mobile Edge Computing (MEC) has been proposed to bring intelligence closer to the edge, where data is produced. However, conventional enabling technologies for ML at mobile edge networks still require personal data to be shared with external parties, e.g., edge servers. Recently, in light of increasingly stringent data privacy legislations and growing privacy concerns, the concept of Federated Learning (FL) has been introduced. In FL, end devices use their local data to train an ML model required by the server. The end devices then send the model updates rather than raw data to the server for aggregation. FL can serve as an enabling technology in mobile edge networks since it enables the collaborative training of an ML model and also enables DL for mobile edge network optimization. However, in a large-scale and complex mobile edge network, heterogeneous devices with varying constraints are involved. This raises challenges of communication costs, resource allocation, and privacy and security in the implementation of FL at scale. In this survey, we begin with an introduction to the background and fundamentals of FL. Then, we highlight the aforementioned challenges of FL implementation and review existing solutions. Furthermore, we present the applications of FL for mobile edge network optimization. Finally, we discuss the important challenges and future research directions in FL.
translated by 谷歌翻译