这是一篇详细的教程论文,解释了Fisher判别分析(FDA)和内核FDA。我们从投影和重建开始。然后,涵盖了一维FDA子空间。FDA中解释了两种和多类的散射。然后,我们讨论散点等级和子空间的维度。还为解释FDA提供了一个现实的示例。然后,讨论了散射的可能奇异性,以引入强大的FDA。还比较了PCA和FDA方向。我们还证明FDA和线性判别分析是等效的。Fisher Forest也被引入是Fisher子空间的集合,可用于处理具有不同特征和维度的数据。之后,对具有两级和多类的一维子空间解释了内核FDA。最后,在AT&T Face数据集上进行了一些模拟,以说明FDA并将其与PCA进行比较。
translated by 谷歌翻译
这是一篇详细的教程论文,解释了主要组件分析(PCA),监督PCA(SPCA),内核PCA和内核SPCA。我们从投影开始,具有特征分类的PCA,带有一个和多个投影方向的PCA,投影矩阵的属性,重建误差最小化,我们连接到自动编码器。然后,涵盖具有单数值分解,双PCA和核PCA的PCA。使用评分和希尔伯特·史克米特独立标准的SPCA。然后引入使用直接方法和双重方法的内核SPCA。我们涵盖了所有投影和重建培训和样本外数据的案例。最后,在Frey和AT&T Face数据集上提供了一些模拟,以验证实践中的理论。
translated by 谷歌翻译
这是针对非线性维度和特征提取方法的教程和调查论文,该方法基于数据图的拉普拉斯语。我们首先介绍邻接矩阵,拉普拉斯矩阵的定义和拉普拉斯主义的解释。然后,我们涵盖图形和光谱聚类的切割,该谱图应用于数据子空间。解释了Laplacian征收及其样本外扩展的不同优化变体。此后,我们将保留投影的局部性及其内核变体作为拉普拉斯征本征的线性特殊案例。然后解释了图嵌入的版本,这些版本是Laplacian eigenmap和局部保留投影的广义版本。最后,引入了扩散图,这是基于数据图和随机步行的方法。
translated by 谷歌翻译
这是一份有关降低光谱维度降低方法统一的教程和调查论文,通过半决赛编程(SDP)学习内核学习,最大方差展开(MVU)或半芬特嵌入(SDE)及其变体。我们首先解释了如何将频谱降低方法降低方法统一为具有不同内核的内核主成分分析(PCA)。在距离矩阵方面,该统一可以解释为内核的本本函数学习或表示。然后,由于光谱方法被统一为内核PCA,因此我们说,让我们学习将数据的歧管展开至最大方差的最佳内核。我们首先简要介绍了SDP的内核学习来进行转导任务。然后,我们详细解释MVU。解释了使用最近的邻居图,通过课堂展开,Fisher Criterion和通过彩色MVU进行的各种监督MVU。我们还使用本征函数和内核映射解释了MVU的样本外扩展。最后,我们介绍了MVU的其他变体,包括尊重嵌入,放松的MVU和Landmark MVU的动作,以获取大数据。
translated by 谷歌翻译
NYSTR \“ OM方法是提高内核方法可伸缩性的最流行技术之一。但是,它尚未与经典PCA一致的核PCA得出。在本文中,我们使用NyStr \”来得出核PCA。OM方法,从而提供了使内核PCA可扩展的少数可用选项之一。我们通过与完整方法相比,通过有限样本的置信度结合了经验重建误差,进一步研究其统计精度。该方法和绑定的行为通过在多个现实世界数据集上的计算机实验进行说明。作为该方法的应用,我们使用NyStr \“ Om方法表示内核主成分回归,作为NyStr \“ Om内核脊回归的替代方案,可用于使用核有效正规化回归。
translated by 谷歌翻译
自我监督的学习(SSL)推测,投入和成对的积极关系足以学习有意义的表示。尽管SSL最近达到了一个里程碑:在许多模式下,胜过监督的方法\点,理论基础是有限的,特定于方法的,并且未能向从业者提供原则上的设计指南。在本文中,我们提出了一个统一的框架,这些框架是在光谱歧管学习的掌舵下,以解决这些局限性。通过这项研究的过程,我们将严格证明Vic​​reg,Simclr,Barlowtwins等。对应于诸如Laplacian eigenmaps,多维缩放等方面的同名光谱方法。然后,此统一将使我们能够获得(i)每种方法的闭合形式的最佳表示,(ii)每种方法的线性态度中的封闭形式的最佳网络参数,(iii)在期间使用的成对关系的影响对每个数量和下游任务性能的培训,以及最重要的是,(iv)分别针对全球和局部光谱嵌入方法的对比度和非对抗性方法之间的第一个理论桥梁,暗示了每种方法的益处和限制。例如,(i)如果成对关系与下游任务一致,则可以成功采用任何SSL方法并将恢复监督方法,但是在低数据状态下,Vicreg的不变性超参数应该很高; (ii)如果成对关系与下游任务未对准,则与SIMCLR或BARLOWTWINS相比,具有小型不变性高参数的VICREG。
translated by 谷歌翻译
监督主体组件分析(SPCA)的方法旨在将标签信息纳入主成分分析(PCA),以便提取的功能对于预测感兴趣的任务更有用。SPCA的先前工作主要集中在优化预测误差上,并忽略了提取功能解释的最大化方差的价值。我们为SPCA提出了一种新的方法,该方法共同解决了这两个目标,并从经验上证明我们的方法主导了现有方法,即在预测误差和变异方面都超越了它们的表现。我们的方法可容纳任意监督的学习损失,并通过统计重新制定提供了广义线性模型的新型低级扩展。
translated by 谷歌翻译
In the field of gait recognition from motion capture data, designing human-interpretable gait features is a common practice of many fellow researchers. To refrain from ad-hoc schemes and to find maximally discriminative features we may need to explore beyond the limits of human interpretability. This paper contributes to the state-of-the-art with a machine learning approach for extracting robust gait features directly from raw joint coordinates. The features are learned by a modification of Linear Discriminant Analysis with Maximum Margin Criterion so that the identities are maximally separated and, in combination with an appropriate classifier, used for gait recognition. Experiments on the CMU MoCap database show that this method outperforms eight other relevant methods in terms of the distribution of biometric templates in respective feature spaces expressed in four class separability coefficients. Additional experiments indicate that this method is a leading concept for rank-based classifier systems.
translated by 谷歌翻译
The accuracy of k-nearest neighbor (kNN) classification depends significantly on the metric used to compute distances between different examples. In this paper, we show how to learn a Mahalanobis distance metric for kNN classification from labeled examples. The Mahalanobis metric can equivalently be viewed as a global linear transformation of the input space that precedes kNN classification using Euclidean distances. In our approach, the metric is trained with the goal that the k-nearest neighbors always belong to the same class while examples from different classes are separated by a large margin. As in support vector machines (SVMs), the margin criterion leads to a convex optimization based on the hinge loss. Unlike learning in SVMs, however, our approach requires no modification or extension for problems in multiway (as opposed to binary) classification. In our framework, the Mahalanobis distance metric is obtained as the solution to a semidefinite program. On several data sets of varying size and difficulty, we find that metrics trained in this way lead to significant improvements in kNN classification. Sometimes these results can be further improved by clustering the training examples and learning an individual metric within each cluster. We show how to learn and combine these local metrics in a globally integrated manner.
translated by 谷歌翻译
这项调查旨在提供线性模型及其背后的理论的介绍。我们的目标是对读者进行严格的介绍,并事先接触普通最小二乘。在机器学习中,输出通常是输入的非线性函数。深度学习甚至旨在找到需要大量计算的许多层的非线性依赖性。但是,这些算法中的大多数都基于简单的线性模型。然后,我们从不同视图中描述线性模型,并找到模型背后的属性和理论。线性模型是回归问题中的主要技术,其主要工具是最小平方近似,可最大程度地减少平方误差之和。当我们有兴趣找到回归函数时,这是一个自然的选择,该回归函数可以最大程度地减少相应的预期平方误差。这项调查主要是目的的摘要,即线性模型背后的重要理论的重要性,例如分布理论,最小方差估计器。我们首先从三种不同的角度描述了普通的最小二乘,我们会以随机噪声和高斯噪声干扰模型。通过高斯噪声,该模型产生了可能性,因此我们引入了最大似然估计器。它还通过这种高斯干扰发展了一些分布理论。最小二乘的分布理论将帮助我们回答各种问题并引入相关应用。然后,我们证明最小二乘是均值误差的最佳无偏线性模型,最重要的是,它实际上接近了理论上的极限。我们最终以贝叶斯方法及以后的线性模型结束。
translated by 谷歌翻译
在本文中,我们应对PCA:异质性的重大挑战。当从不同趋势的不同来源收集数据的同时仍具有一致性时,提取共享知识的同时保留每个来源的独特功能至关重要。为此,我们提出了个性化的PCA(PERPCA),该PCA(PERPCA)使用相互正交的全球和本地主要组件来编码唯一的和共享的功能。我们表明,在轻度条件下,即使协方差矩阵截然不同,也可以通过约束优化问题来识别和恢复独特的和共享的特征。此外,我们设计了一种完全由分布式stiefel梯度下降来解决问题的完全联合算法。该算法引入了一组新的操作,称为通用缩回,以处理正交性约束,并且仅要求跨来源共享全局PC。我们证明了在合适的假设下算法的线性收敛。全面的数值实验突出了PERPCA在特征提取和异质数据集预测方面的出色性能。作为将共享和唯一功能从异质数据集解除共享和独特功能的系统方法,PERPCA在几种任务中找到了应用程序,包括视频细分,主题提取和分布式聚类。
translated by 谷歌翻译
在本文中,我们提出了一个新颖的子空间学习框架,用于一级分类。提出的框架以图形嵌入形式提出了问题。它包括先前提出的子空间一级技术作为特殊情况,并进一步了解这些技术实际优化了什么。该框架允许通过保留图表结合其他有意义的优化目标,并揭示光谱解决方案和基于光谱回归的解决方案作为先前基于梯度的技术的替代方案。我们将子空间学习框架与支持向量数据描述在子空间中应用,以制定图形包含的子空间支持向量数据描述。我们通过实验分析了新提出的不同变体的性能。我们证明了针对基准的性能以及最近提出的单级分类子空间学习方法。
translated by 谷歌翻译
作为经典线性判别分析(LDA)的非线性扩展,深度线性判别分析(DLDA)用基于特征值的损失函数代替了原始的分类横熵函数(CCE)损失函数,以使深度神经网络(DNN)能够学习线性可分离的隐藏表示形式。在本文中,我们首先指出DLDA专注于培训潜在子空间中所有维度的合作判别能力,同时较少强调训练单个维度的可分离能力。为了改善DLDA,提出了一种关于课堂内散点矩阵的正则化方法来增强每个维度的判别能力,并保持它们相互补充。 STL-10,CIFAR-10和小儿肺炎胸部X射线数据集的实验结果表明,我们提出的正则化方法正规化的深度线性判别分析(RDLDA)优于DLDA和常规神经网络,CCE是目标。为了进一步提高RDLDA在本地空间中的判别能力,还提出了一种名为子类RDLDA的算法。
translated by 谷歌翻译
本文解决了对象识别的问题,给出了一组图像作为输入(例如,多个相机源和视频帧)。基于卷积神经网络(CNN)的框架不会有效地利用这些集合,处理如观察到的模式,而不是捕获基础特征分布,因为它不考虑集合中的图像的方差。为了解决这个问题,我们提出了基于基于CNNS的CNNS作为分类器的NN层,作为分类器的NN层,可以更有效地处理图像,并且可以以端到端的方式训练。图像集由低维输入子空间表示;并且此输入子空间与参考子空间匹配,通过其规范角度的相似性,可解释和易于计算度量。 G-LMSM的关键思想是参考子空间被学习为基层歧管的点,用黎曼随机梯度下降而优化。这种学习是稳定,高效,理论上的接地。我们展示了我们提出的方法在手工形状识别,面部识别和面部情感识别方面的有效性。
translated by 谷歌翻译
In many modern applications of deep learning the neural network has many more parameters than the data points used for its training. Motivated by those practices, a large body of recent theoretical research has been devoted to studying overparameterized models. One of the central phenomena in this regime is the ability of the model to interpolate noisy data, but still have test error lower than the amount of noise in that data. arXiv:1906.11300 characterized for which covariance structure of the data such a phenomenon can happen in linear regression if one considers the interpolating solution with minimum $\ell_2$-norm and the data has independent components: they gave a sharp bound on the variance term and showed that it can be small if and only if the data covariance has high effective rank in a subspace of small co-dimension. We strengthen and complete their results by eliminating the independence assumption and providing sharp bounds for the bias term. Thus, our results apply in a much more general setting than those of arXiv:1906.11300, e.g., kernel regression, and not only characterize how the noise is damped but also which part of the true signal is learned. Moreover, we extend the result to the setting of ridge regression, which allows us to explain another interesting phenomenon: we give general sufficient conditions under which the optimal regularization is negative.
translated by 谷歌翻译
对比学习在各种自我监督的学习任务中取得了最先进的表现,甚至优于其监督的对应物。尽管其经验成功,但对为什么对比学习作品的理论认识仍然有限。在本文中,(i)我们证明,对比学习胜过AutoEncoder,一种经典无监督的学习方法,适用于特征恢复和下游任务;(ii)我们还说明标记数据在监督对比度学习中的作用。这为最近的发现提供了理论支持,即对标签对比学习的结果提高了域名下游任务中学识表的表现,但它可能会损害转移学习的性能。我们通过数值实验验证了我们的理论。
translated by 谷歌翻译
在机器学习或统计中,通常希望减少高维空间$ \ mathbb {r} ^ d $的数据点样本的维度。本文介绍了一种维度还原方法,其中嵌入坐标是作为半定程序无限尺寸模拟的溶液获得的正半定核的特征向量。这种嵌入是自适应和非线性的。我们对学习内核的弱者和强烈的平滑假设讨论了这个问题。我们的方法的主要特点是在两种情况下存在嵌入坐标的样本延伸公式。该外推公式产生内核矩阵的延伸到数据相关的Mercer内核功能。我们的经验结果表明,与光谱嵌入方法相比,该嵌入方法对异常值的影响更加稳健。
translated by 谷歌翻译
为什么深神经网络(DNN)受益于非常高的维度参数空间?他们的巨大参数复杂性与实践中的惊人表演是使用标准常规模型理论的更具迷恋和无法解释的。在这项工作中,我们提出了一种几何风味的信息 - 理论方法来研究这种现象。即,我们通过考虑Fisher信息矩阵的显着尺寸的数量来介绍神经网络模型的参数空间的局部变化维度,并使用奇异半riemannian几何框架将参数空间模拟作为歧管的参数空间。我们推出模型复杂度措施,其基于奇点分析产生深度神经网络模型的简短描述长度,因此尽管有大量参数,但是尽管有大量的参数,但是尽管有大量的参数来解释DNN的良好性能。
translated by 谷歌翻译
主成分分析(PCA)是大数据时代的维度减少的Workhorse工具。虽然经常被忽视,但PCA的目的不仅可以减少数据维度,而且还要产生不相关的功能。此外,现代世界中不断增加的数据量通常需要在多台机器上存储数据样本,这会排除使用集中式PCA算法。本文重点介绍了PCA的双重目标,即功能的维度和特征的脱钩,但在分布式环境中。这需要估计数据协方差矩阵的特征向量,而不是仅估计特征向量跨越的子空间,当数据分布在机器网络上时。尽管最近已经提出了几种分布式PCA问题的分布式解决方案,但这些解决方案的收敛保证和/或通信开销仍然是一个问题。随着通信效率的眼睛,介绍了一种基于前馈神经网络的一种时级分布式PCA算法,其被称为分布式Sanger的算法(DSA),该算法(DSA)估计数据协方差矩阵的特征向量,当数据分布在一个无向连接的网络上时机器。此外,所提出的算法被示出为线性地收敛到真实解决方案的邻域。还提供了数值结果以证明所提出的解决方案的功效。
translated by 谷歌翻译
主成分分析(PCA)是信号处理中无处不在的维度降低技术,搜索一个投影矩阵,该矩阵最小化了还原数据集和原始数据集之间的平方误差。由于经典的PCA并非量身定制用于解决与公平性有关的问题,因此其对实际问题的应用可能会导致不同群体的重建错误(例如,男人和女人,白人和黑人等)的差异,并带来可能有害的后果,例如引入偏见对敏感群体。尽管最近提出了几种公平的PCA版本,但在搜索算法中仍然存在基本差距,这些算法足够简单,可以部署在实际系统中。为了解决这个问题,我们提出了一种新颖的PCA算法,该算法通过一个简单的策略来解决公平问题,该策略包括一维搜索,该搜索利用了PCA的封闭形式解决方案。如数值实验所证明的那样,该提案可以通过总体重建误差的损失很小,而无需诉诸复杂的优化方案,从而显着提高公平性。此外,我们的发现在几种真实情况以及在具有不平衡和平衡数据集的情况下是一致的。
translated by 谷歌翻译