Neural 3D implicit representations learn priors that are useful for diverse applications, such as single- or multiple-view 3D reconstruction. A major downside of existing approaches while rendering an image is that they require evaluating the network multiple times per camera ray so that the high computational time forms a bottleneck for downstream applications. We address this problem by introducing a novel neural scene representation that we call the directional distance function (DDF). To this end, we learn a signed distance function (SDF) along with our DDF model to represent a class of shapes. Specifically, our DDF is defined on the unit sphere and predicts the distance to the surface along any given direction. Therefore, our DDF allows rendering images with just a single network evaluation per camera ray. Based on our DDF, we present a novel fast algorithm (FIRe) to reconstruct 3D shapes given a posed depth map. We evaluate our proposed method on 3D reconstruction from single-view depth images, where we empirically show that our algorithm reconstructs 3D shapes more accurately and it is more than 15 times faster (per iteration) than competing methods.
translated by 谷歌翻译
在视觉计算中,3D几何形状以许多不同的形式表示,包括网格,点云,体素电网,水平集和深度图像。每个表示都适用于不同的任务,从而使一个表示形式转换为另一个表示(前向地图)是一个重要且常见的问题。我们提出了全向距离字段(ODF),这是一种新的3D形状表示形式,该表示通过将深度从任何观看方向从任何3D位置存储到对象的表面来编码几何形状。由于射线是ODF的基本单元,因此可以轻松地从通用的3D表示和点云等常见的3D表示。与限制代表封闭表面的水平集方法不同,ODF是未签名的,因此可以对开放表面进行建模(例如服装)。我们证明,尽管在遮挡边界处存在固有的不连续性,但可以通过神经网络(Neururodf)有效地学习ODF。我们还引入了有效的前向映射算法,以转换odf to&从常见的3D表示。具体而言,我们引入了一种有效的跳跃立方体算法,用于从ODF生成网格。实验表明,神经模型可以通过过度拟合单个对象学会学会捕获高质量的形状,并学会概括对共同的形状类别。
translated by 谷歌翻译
我们引入了一个新的隐式形状表示,称为基于射线的隐式函数(PRIF)。与基于处理空间位置的签名距离函数(SDF)的大多数现有方法相反,我们的表示形式在定向射线上运行。具体而言,PRIF的配制是直接产生给定输入射线的表面命中点,而无需昂贵的球体跟踪操作,因此可以有效地提取形状提取和可区分的渲染。我们证明,经过编码PRIF的神经网络在各种任务中取得了成功,包括单个形状表示,类别形状的生成,从稀疏或嘈杂的观察到形状完成,相机姿势估计的逆渲染以及带有颜色的神经渲染。
translated by 谷歌翻译
We propose a differentiable sphere tracing algorithm to bridge the gap between inverse graphics methods and the recently proposed deep learning based implicit signed distance function. Due to the nature of the implicit function, the rendering process requires tremendous function queries, which is particularly problematic when the function is represented as a neural network. We optimize both the forward and backward passes of our rendering layer to make it run efficiently with affordable memory consumption on a commodity graphics card. Our rendering method is fully differentiable such that losses can be directly computed on the rendered 2D observations, and the gradients can be propagated backwards to optimize the 3D geometry. We show that our rendering method can effectively reconstruct accurate 3D shapes from various inputs, such as sparse depth and multi-view images, through inverse optimization. With the geometry based reasoning, our 3D shape prediction methods show excellent generalization capability and robustness against various noises. * Work done while Shaohui Liu was an academic guest at ETH Zurich.
translated by 谷歌翻译
With the success of neural volume rendering in novel view synthesis, neural implicit reconstruction with volume rendering has become popular. However, most methods optimize per-scene functions and are unable to generalize to novel scenes. We introduce VolRecon, a generalizable implicit reconstruction method with Signed Ray Distance Function (SRDF). To reconstruct with fine details and little noise, we combine projection features, aggregated from multi-view features with a view transformer, and volume features interpolated from a coarse global feature volume. A ray transformer computes SRDF values of all the samples along a ray to estimate the surface location, which are used for volume rendering of color and depth. Extensive experiments on DTU and ETH3D demonstrate the effectiveness and generalization ability of our method. On DTU, our method outperforms SparseNeuS by about 30% in sparse view reconstruction and achieves comparable quality as MVSNet in full view reconstruction. Besides, our method shows good generalization ability on the large-scale ETH3D benchmark. Project page: https://fangjinhuawang.github.io/VolRecon.
translated by 谷歌翻译
我们提出了GO-SURF,这是一种直接特征网格优化方法,可从RGB-D序列进行准确和快速的表面重建。我们用学习的分层特征素网格对基础场景进行建模,该网络封装了多级几何和外观本地信息。特征向量被直接优化,使得三线性插值后,由两个浅MLP解码为签名的距离和辐射度值,并通过表面体积渲染渲染,合成和观察到的RGB/DEPTH值之间的差异最小化。我们的监督信号-RGB,深度和近似SDF可以直接从输入图像中获得,而无需融合或后处理。我们制定了一种新型的SDF梯度正则化项,该项鼓励表面平滑度和孔填充,同时保持高频细节。 GO-SURF可以优化$ 1 $ - $ 2 $ K框架的序列,价格为$ 15 $ - $ 45 $分钟,$ \ times60 $的速度超过了NeuralRGB-D,这是基于MLP表示的最相关的方法,同时保持PAR性能在PAR上的性能标准基准。项目页面:https://jingwenwang95.github.io/go_surf/
translated by 谷歌翻译
In this work we address the challenging problem of multiview 3D surface reconstruction. We introduce a neural network architecture that simultaneously learns the unknown geometry, camera parameters, and a neural renderer that approximates the light reflected from the surface towards the camera. The geometry is represented as a zero level-set of a neural network, while the neural renderer, derived from the rendering equation, is capable of (implicitly) modeling a wide set of lighting conditions and materials. We trained our network on real world 2D images of objects with different material properties, lighting conditions, and noisy camera initializations from the DTU MVS dataset. We found our model to produce state of the art 3D surface reconstructions with high fidelity, resolution and detail.
translated by 谷歌翻译
将3D坐标映射到签名距离函数(SDF)或占用值的神经网络具有启用对象形状的高保真隐式表示。本文开发了一种新的形状模型,允许通过优化连续符号定向距离功能(SDDF)来合成新颖距离视图。与Deep SDF模型类似,我们的SDDF配方可以代表整个类别的形状并从部分输入数据中跨越形状填写或插入。与SDF不同,该SDF在任何方向上测量到最近表面的距离,SDDF测量给定方向的距离。这允许训练没有3D形状监控的SDDF模型,仅使用距离测量,从深度相机或激光雷达传感器易获得。我们的模型还通过直接在任意位置和观察方向上直接预测距离,去除像表面提取或渲染的后处理步骤。与深色视角综合技术不同,例如培训高容量黑盒型号的神经辐射字段,我们的模型通过构造SDDF值沿着观察方向线性降低的性质。这种结构约束不仅导致维度降低,而且还提供了关于SDDF预测的准确性的分析信心,无论到物体表面的距离如何。
translated by 谷歌翻译
我们介绍了一种新的神经表面重建方法,称为Neus,用于重建具有高保真的对象和场景,从2D图像输入。现有的神经表面重建方法,例如DVR和IDR,需要前景掩模作为监控,容易被捕获在局部最小值中,因此与具有严重自动遮挡或薄结构的物体的重建斗争。同时,新型观测合成的最近神经方法,例如Nerf及其变体,使用体积渲染来产生具有优化的稳健性的神经场景表示,即使对于高度复杂的物体。然而,从该学习的内隐式表示提取高质量表面是困难的,因为表示表示没有足够的表面约束。在Neus中,我们建议将表面代表为符号距离功能(SDF)的零级集,并开发一种新的卷渲染方法来训练神经SDF表示。我们观察到传统的体积渲染方法导致表面重建的固有的几何误差(即偏置),因此提出了一种新的制剂,其在第一阶的第一阶偏差中没有偏置,因此即使没有掩码监督,也导致更准确的表面重建。 DTU数据集的实验和BlendedMVS数据集显示,Neus在高质量的表面重建中优于最先进的,特别是对于具有复杂结构和自动闭塞的物体和场景。
translated by 谷歌翻译
深度生成模型的最新进展导致了3D形状合成的巨大进展。虽然现有模型能够合成表示为体素,点云或隐式功能的形状,但这些方法仅间接强制执行最终3D形状表面的合理性。在这里,我们提出了一种直接将对抗训练施加到物体表面的3D形状合成框架(Surfgen)。我们的方法使用可分解的球面投影层来捕获并表示隐式3D发生器的显式零IsoSurface作为在单元球上定义的功能。通过在对手设置中用球形CNN处理3D对象表面的球形表示,我们的发电机可以更好地学习自然形状表面的统计数据。我们在大规模形状数据集中评估我们的模型,并证明了端到端训练的模型能够产生具有不同拓扑的高保真3D形状。
translated by 谷歌翻译
我们介绍了我们称呼STYLESDF的高分辨率,3D一致的图像和形状生成技术。我们的方法仅在单视图RGB数据上培训,并站在StyleGan2的肩部,用于图像生成,同时解决3D感知GANS中的两个主要挑战:1)RGB图像的高分辨率,视图 - 一致生成RGB图像,以及2)详细的3D形状。通过使用基于样式的2D发生器合并基于SDF的3D表示来实现这一目标。我们的3D隐式网络呈现出低分辨率的特征映射,其中基于样式的网络生成了View-Consive,1024x1024图像。值得注意的是,基于SDF的3D建模定义了详细的3D曲面,导致一致的卷渲染。在视觉和几何质量方面,我们的方法显示出更高的质量结果。
translated by 谷歌翻译
神经隐式功能最近显示了来自多个视图的表面重建的有希望的结果。但是,当重建无限或复杂的场景时,当前的方法仍然遭受过度复杂性和稳健性不佳。在本文中,我们介绍了RegSDF,这表明适当的点云监督和几何正规化足以产生高质量和健壮的重建结果。具体而言,RegSDF将额外的定向点云作为输入,并优化了可区分渲染框架内的签名距离字段和表面灯场。我们还介绍了这两个关键的正规化。第一个是在给定嘈杂和不完整输入的整个距离字段中平稳扩散签名距离值的Hessian正则化。第二个是最小的表面正则化,可紧凑并推断缺失的几何形状。大量实验是在DTU,BlendenDMV以及储罐和寺庙数据集上进行的。与最近的神经表面重建方法相比,RegSDF即使对于具有复杂拓扑和非结构化摄像头轨迹的开放场景,RegSDF也能够重建表面。
translated by 谷歌翻译
我们的方法从单个RGB-D观察中研究了以对象为中心的3D理解的复杂任务。由于这是一个不适的问题,因此现有的方法在3D形状和6D姿势和尺寸估计中都遭受了遮挡的复杂多对象方案的尺寸估计。我们提出了Shapo,这是一种联合多对象检测的方法,3D纹理重建,6D对象姿势和尺寸估计。 Shapo的关键是一条单杆管道,可回归形状,外观和构成潜在的代码以及每个对象实例的口罩,然后以稀疏到密集的方式进一步完善。首先学到了一种新颖的剖面形状和前景数据库,以将对象嵌入各自的形状和外观空间中。我们还提出了一个基于OCTREE的新颖的可区分优化步骤,使我们能够以分析的方式进一步改善对象形状,姿势和外观。我们新颖的联合隐式纹理对象表示使我们能够准确地识别和重建新颖的看不见的对象,而无需访问其3D网格。通过广泛的实验,我们表明我们的方法在模拟的室内场景上进行了训练,可以准确地回归现实世界中新颖物体的形状,外观和姿势,并以最小的微调。我们的方法显着超过了NOCS数据集上的所有基准,对于6D姿势估计,MAP的绝对改进为8%。项目页面:https://zubair-irshad.github.io/projects/shapo.html
translated by 谷歌翻译
图像中的3D重建在虚拟现实和自动驾驶中具有广泛的应用,在此精确要求非常高。通过利用多层感知,在神经辐射场(NERF)中进行的突破性研究已大大提高了3D对象的表示质量。后来的一些研究通过建立截短的签名距离场(TSDF)改善了NERF,但仍遭受3D重建中表面模糊的问题。在这项工作中,通过提出一种新颖的3D形状表示方式Omninerf来解决这种表面歧义。它基于训练Omni方向距离场(ODF)和神经辐射场的混合隐式场,用全向信息代替NERF中的明显密度。此外,我们在深度图上介绍了其他监督,以进一步提高重建质量。该提出的方法已被证明可以有效处理表面重建边缘的NERF缺陷,从而提供了更高质量的3D场景重建结果。
translated by 谷歌翻译
在许多计算机视觉和图形应用程序中,从2D图像重建3D室内场景是一项重要任务。这项任务中的一个主要挑战是,典型的室内场景中的无纹理区域使现有方法难以产生令人满意的重建结果。我们提出了一种名为Neuris的新方法,以高质量地重建室内场景。 Neuris的关键思想是将估计的室内场景正常整合为神经渲染框架中的先验,以重建大型无纹理形状,并且重要的是,以适应性的方式进行此操作,以便重建不规则的形状,并具有很好的细节。 。具体而言,我们通过检查优化过程中重建的多视图一致性来评估正常先验的忠诚。只有被接受为忠实的正常先验才能用于3D重建,通常发生在平滑形状的区域中,可能具有弱质地。但是,对于那些具有小物体或薄结构的区域,普通先验通常不可靠,我们只能依靠输入图像的视觉特征,因为此类区域通常包含相对较丰富的视觉特征(例如,阴影变化和边界轮廓)。广泛的实验表明,在重建质量方面,Neuris明显优于最先进的方法。
translated by 谷歌翻译
获取房间规模场景的高质量3D重建对于即将到来的AR或VR应用是至关重要的。这些范围从混合现实应用程序进行电话会议,虚拟测量,虚拟房间刨,到机器人应用。虽然使用神经辐射场(NERF)的基于卷的视图合成方法显示有希望再现对象或场景的外观,但它们不会重建实际表面。基于密度的表面的体积表示在使用行进立方体提取表面时导致伪影,因为在优化期间,密度沿着射线累积,并且不在单个样本点处于隔离点。我们建议使用隐式函数(截短的签名距离函数)来代表表面来代表表面。我们展示了如何在NERF框架中纳入此表示,并将其扩展为使用来自商品RGB-D传感器的深度测量,例如Kinect。此外,我们提出了一种姿势和相机细化技术,可提高整体重建质量。相反,与集成NERF的深度前瞻性的并发工作,其专注于新型视图合成,我们的方法能够重建高质量的韵律3D重建。
translated by 谷歌翻译
我们呈现圆圈,基于本地隐式符号距离函数的大规模场景完成和几何精致的框架。它基于端到端的稀疏卷积网络,Circnet,共同模拟局部几何细节和全局场景结构背景,使其能够在传统3D场景数据中恢复通常产生的缺失区域的同时保留细粒度的对象细节。一种新颖的可分解渲染模块,可以进行测试时间精制以获得更好的重建质量。对现实世界和合成数据集的广泛实验表明,我们的简明框架是高效且有效的,实现比最接近竞争对手更好的重建质量,同时速度更快。
translated by 谷歌翻译
In this work, we present a dense tracking and mapping system named Vox-Fusion, which seamlessly fuses neural implicit representations with traditional volumetric fusion methods. Our approach is inspired by the recently developed implicit mapping and positioning system and further extends the idea so that it can be freely applied to practical scenarios. Specifically, we leverage a voxel-based neural implicit surface representation to encode and optimize the scene inside each voxel. Furthermore, we adopt an octree-based structure to divide the scene and support dynamic expansion, enabling our system to track and map arbitrary scenes without knowing the environment like in previous works. Moreover, we proposed a high-performance multi-process framework to speed up the method, thus supporting some applications that require real-time performance. The evaluation results show that our methods can achieve better accuracy and completeness than previous methods. We also show that our Vox-Fusion can be used in augmented reality and virtual reality applications. Our source code is publicly available at https://github.com/zju3dv/Vox-Fusion.
translated by 谷歌翻译
Figure 1: DeepSDF represents signed distance functions (SDFs) of shapes via latent code-conditioned feed-forward decoder networks. Above images are raycast renderings of DeepSDF interpolating between two shapes in the learned shape latent space. Best viewed digitally.
translated by 谷歌翻译