我们考虑了折现成本约束的马尔可夫决策过程(CMDP)策略优化问题,其中代理商试图最大化折扣累计奖励,但受到折扣累积公用事业的许多限制。为了解决这个受约束的优化程序,我们研究了经典原始偶性方法的在线参与者 - 批判性变体,其中使用来自基本时间变化的马尔可夫过程产生的单个轨迹的样品估算了原始功能和双重函数的梯度。这种在线原始双重自然参与者批评算法维护并迭代更新三个变量:双变量(或拉格朗日乘数),一个原始变量(或actor)以及用于估算原始变量和偶变量的梯度的评论变量。这些变量同时更新,但在不同的时间尺度上(使用不同的步骤尺寸),它们都相互交织在一起。我们的主要贡献是得出该算法与CMDP问题全局最佳收敛的有限时间分析。具体而言,我们表明,在适当的步骤中,最佳差距和约束违规的情况下,以$ \ mathcal {o}(1/k^{1/6})$的价格收敛到零,其中k是数字。迭代。据我们所知,本文是第一个研究用于解决CMDP问题的在线原始偶发参与者方法的有限时间复杂性。我们还通过数值模拟来验证该算法的有效性。
translated by 谷歌翻译
This paper studies a class of multi-agent reinforcement learning (MARL) problems where the reward that an agent receives depends on the states of other agents, but the next state only depends on the agent's own current state and action. We name it REC-MARL standing for REward-Coupled Multi-Agent Reinforcement Learning. REC-MARL has a range of important applications such as real-time access control and distributed power control in wireless networks. This paper presents a distributed and optimal policy gradient algorithm for REC-MARL. The proposed algorithm is distributed in two aspects: (i) the learned policy is a distributed policy that maps a local state of an agent to its local action and (ii) the learning/training is distributed, during which each agent updates its policy based on its own and neighbors' information. The learned policy is provably optimal among all local policies and its regret bounds depend on the dimension of local states and actions. This distinguishes our result from most existing results on MARL, which often obtain stationary-point policies. The experimental results of our algorithm for the real-time access control and power control in wireless networks show that our policy significantly outperforms the state-of-the-art algorithms and well-known benchmarks.
translated by 谷歌翻译
我们研究具有多个奖励价值函数的马尔可夫决策过程(MDP)的政策优化,应根据给定的标准共同优化,例如比例公平(平滑凹面标量),硬约束(约束MDP)和Max-Min Trade-离开。我们提出了一个改变锚定的正规自然政策梯度(ARNPG)框架,该框架可以系统地将良好表现的一阶方法中的思想纳入多目标MDP问题的策略优化算法的设计。从理论上讲,基于ARNPG框架的设计算法实现了$ \ tilde {o}(1/t)$全局收敛,并具有精确的梯度。从经验上讲,与某些现有的基于策略梯度的方法相比,ARNPG引导的算法在精确梯度和基于样本的场景中也表现出卓越的性能。
translated by 谷歌翻译
我们考虑了在连续的状态行为空间中受到约束马尔可夫决策过程(CMDP)的问题,在该空间中,目标是最大程度地提高预期的累积奖励受到某些约束。我们提出了一种新型的保守自然政策梯度原始二算法(C-NPG-PD),以达到零约束违规,同时实现了目标价值函数的最新融合结果。对于一般策略参数化,我们证明了价值函数与全局最佳功能的融合到由于限制性策略类而导致的近似错误。我们甚至从$ \ Mathcal {o}(1/\ epsilon^6)$从$ \ Mathcal {o}(1/\ Epsilon^4)$提高了现有约束NPG-PD算法\ cite {ding2020}的样本复杂性。。据我们所知,这是第一项通过自然政策梯度样式算法建立零约束违规的工作,用于无限的地平线折扣CMDP。我们通过实验评估证明了提出的算法的优点。
translated by 谷歌翻译
在本文中,我们在表格设置中建立了违法演员批评算法的全球最优性和收敛速度,而不使用密度比来校正行为政策的状态分布与目标政策之间的差异。我们的工作超出了现有的工作原理,最佳的策略梯度方法中的现有工作中使用确切的策略渐变来更新策略参数时,我们使用近似和随机更新步骤。我们的更新步骤不是渐变更新,因为我们不使用密度比以纠正状态分布,这与从业者做得好。我们的更新是近似的,因为我们使用学习的评论家而不是真正的价值函数。我们的更新是随机的,因为在每个步骤中,更新仅为当前状态操作对完成。此外,我们在分析中删除了现有作品的几个限制性假设。我们的工作中的核心是基于其均匀收缩性能的时源性Markov链中的通用随机近似算法的有限样本分析。
translated by 谷歌翻译
受限的强化学习是最大程度地提高预期奖励受到公用事业/成本的限制。但是,由于建模错误,对抗性攻击,非平稳性,训练环境可能与测试环境不一样,导致严重的性能降级和更重要的违反约束。我们提出了一个在模型不确定性下的强大约束强化学习框架,其中MDP不是固定的,而是在某些不确定性集中,目的是确保在不确定性集中满足所有MDP的限制,并最大程度地满足对公用事业/成本的限制不确定性集中最差的奖励性能。我们设计了一种强大的原始双重方法,并在理论上进一步发展了其收敛性,复杂性和可行性的保证。然后,我们研究了$ \ delta $ - 污染不确定性集的具体示例,设计一种在线且无模型的算法,并理论上表征了其样本复杂性。
translated by 谷歌翻译
我们解决了加固学习的安全问题。我们在折扣无限地平线受限的Markov决策过程框架中提出了问题。现有结果表明,基于梯度的方法能够实现$ \ mathcal {o}(1 / \ sqrt {t})$全球收敛速度,用于最优差距和约束违规。我们展示了一种基于自然的基于政策梯度的算法,该算法具有更快的收敛速度$ \ mathcal {o}(\ log(t)/ t)$的最优性差距和约束违规。当满足Slater的条件并已知先验时,可以进一步保证足够大的$ T $的零限制违规,同时保持相同的收敛速度。
translated by 谷歌翻译
在本文中,我们研究了强大的马尔可夫决策过程(MDPS)的最佳稳健策略和价值功能的非反应性和渐近性能,其中仅从生成模型中求解了最佳的稳健策略和价值功能。尽管在KL不确定性集和$(s,a)$ - 矩形假设的设置中限制了以前专注于可靠MDP的非反应性能的工作,但我们改善了它们的结果,还考虑了其​​他不确定性集,包括$ L_1 $和$ L_1 $和$ \ chi^2 $球。我们的结果表明,当我们假设$(s,a)$ - 矩形在不确定性集上时,示例复杂度大约为$ \ widetilde {o} \ left(\ frac {| \ mathcal {| \ mathcal {s} |^2 | \ mathcal { a} |} {\ varepsilon^2 \ rho^2(1- \ gamma)^4} \ right)$。此外,我们将结果从$(s,a)$ - 矩形假设扩展到$ s $矩形假设。在这种情况下,样本复杂性随选择不确定性集而变化,通常比$(s,a)$矩形假设下的情况大。此外,我们还表明,在$(s,a)$和$ s $ retectangular的假设下,从理论和经验的角度来看,最佳的鲁棒值函数是渐近的正常,典型的速率$ \ sqrt {n} $。
translated by 谷歌翻译
近年来,动态机制设计引起了计算机科学家和经济学家的极大关注。通过允许代理商在多个回合中与卖方互动,在这种情况下,代理商的奖励功能可能会随着时间而变化并且与国家有关,该框架能够建模丰富的现实世界问题。在这些作品中,通常认为代理商和卖方之间的相互作用遵循马尔可夫决策过程(MDP)。我们专注于此类MDP的奖励和过渡函数的设置,而不是先验地知道,我们正在尝试使用先验收集的数据集恢复最佳机制。在使用函数近似来处理大型状态空间的情况下,只有对功能类表达式的轻度假设,我们能够使用离线增强学习算法设计动态机制。此外,学到的机制大约具有三个关键的逃避:效率,个人理性和真实性。我们的算法基于悲观原则,仅需要对离线数据集的覆盖率进行温和的假设。据我们所知,我们的工作为动态机制设计提供了第一个离线RL算法,而无需假设覆盖范围。
translated by 谷歌翻译
Temporal difference (TD) learning is a simple algorithm for policy evaluation in reinforcement learning. The performance of TD learning is affected by high variance and it can be naturally enhanced with variance reduction techniques, such as the Stochastic Variance Reduced Gradient (SVRG) method. Recently, multiple works have sought to fuse TD learning with SVRG to obtain a policy evaluation method with a geometric rate of convergence. However, the resulting convergence rate is significantly weaker than what is achieved by SVRG in the setting of convex optimization. In this work we utilize a recent interpretation of TD-learning as the splitting of the gradient of an appropriately chosen function, thus simplifying the algorithm and fusing TD with SVRG. We prove a geometric convergence bound with predetermined learning rate of 1/8, that is identical to the convergence bound available for SVRG in the convex setting.
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
强化学习被广泛用于在与环境互动时需要执行顺序决策的应用中。当决策要求包括满足一些安全限制时,问题就变得更加具有挑战性。该问题在数学上是作为约束的马尔可夫决策过程(CMDP)提出的。在文献中,可以通过无模型的方式解决各种算法来解决CMDP问题,以实现$ \ epsilon $ - 最佳的累积奖励,并使用$ \ epsilon $可行的政策。 $ \ epsilon $可行的政策意味着它遭受了违规的限制。这里的一个重要问题是,我们是否可以实现$ \ epsilon $ - 最佳的累积奖励,并违反零约束。为此,我们主张使用随机原始偶对偶方法来解决CMDP问题,并提出保守的随机原始二重算法(CSPDA),该算法(CSPDA)显示出$ \ tilde {\ tilde {\ Mathcal {o}} \ left(1 /\ epsilon^2 \ right)$样本复杂性,以实现$ \ epsilon $ - 最佳累积奖励,违反零约束。在先前的工作中,$ \ epsilon $ - 最佳策略的最佳可用样本复杂性是零约束的策略是$ \ tilde {\ Mathcal {o}}} \ left(1/\ epsilon^5 \ right)$。因此,与最新技术相比,拟议的算法提供了重大改进。
translated by 谷歌翻译
在本文中,我们研究了加强学习问题的安全政策的学习。这是,我们的目标是控制我们不知道过渡概率的马尔可夫决策过程(MDP),但我们通过经验访问样品轨迹。我们将安全性定义为在操作时间内具有高概率的期望安全集中的代理。因此,我们考虑受限制的MDP,其中限制是概率。由于没有直接的方式来优化关于加强学习框架中的概率约束的政策,因此我们提出了对问题的遍历松弛。拟议的放松的优点是三倍。 (i)安全保障在集界任务的情况下保持,并且它们保持在一个给定的时间范围内,以继续进行任务。 (ii)如果政策的参数化足够丰富,则约束优化问题尽管其非凸起具有任意小的二元间隙。 (iii)可以使用标准策略梯度结果和随机近似工具容易地计算与安全学习问题相关的拉格朗日的梯度。利用这些优势,我们建立了原始双算法能够找到安全和最佳的政策。我们在连续域中的导航任务中测试所提出的方法。数值结果表明,我们的算法能够将策略动态调整到环境和所需的安全水平。
translated by 谷歌翻译
参与者 - 批评(AC)增强学习算法一直是许多具有挑战性的应用背后的强大力量。然而,它的收敛性一般都是脆弱的。为了研究其不稳定性,现有作品主要考虑具有有限状态和动作空间的罕见的双环变体或基本模型。我们研究了更实用的单样本两次尺度AC,用于解决规范线性二次调节器(LQR)问题,其中演员和评论家在每个迭代中仅在无界的连续状态和动作空间中使用单个迭代中的单个样本更新一次。现有的分析无法得出这样一个具有挑战性的情况的融合。我们开发了一个新的分析框架,该框架允许建立全局收敛到$ \ epsilon $ -optimal解决方案,最多最多是$ \ tilde {\ Mathcal {o}}}(\ epsilon^{ - 2.5})$样本复杂性。据我们所知,这是单个样本两次尺度AC的第一个有限时间收敛分析,用于以全球最优性求解LQR。样本复杂性通过订单改善了其他变体的复杂性,从而阐明了单个样品算法的实际智慧。我们还通过全面的模拟比较进一步验证了理论发现。
translated by 谷歌翻译
作为安全加强学习的重要框架,在最近的文献中已经广泛研究了受约束的马尔可夫决策过程(CMDP)。然而,尽管在各种式学习设置下取得了丰富的结果,但就算法设计和信息理论样本复杂性下限而言,仍然缺乏对离线CMDP问题的基本理解。在本文中,我们专注于仅在脱机数据可用的情况下解决CMDP问题。通过采用单极浓缩系数$ c^*$的概念,我们建立了一个$ \ omega \ left(\ frac {\ min \ left \ left \ weft \ {| \ mathcal {s} || \ mathcal {a} a} |,, | \ Mathcal {s} |+i \ right \} c^*} {(1- \ gamma)^3 \ epsilon^2} \ right)$ sample Complacy度在离线cmdp问题上,其中$ i $架对于约束数量。通过引入一种简单但新颖的偏差控制机制,我们提出了一种称为DPDL的近乎最佳的原始二重学习算法。该算法证明,除了$ \ tilde {\ Mathcal {o}}}}(((1- \ gamma)^{ - 1})$外,该算法可确保零约束违规及其样本复杂性匹配上下界。还包括有关如何处理未知常数$ c^*$以及离线数据集中潜在的异步结构的全面讨论。
translated by 谷歌翻译
我们研究了平均奖励马尔可夫决策过程(AMDP)的问题,并开发了具有强大理论保证的新型一阶方法,以进行政策评估和优化。由于缺乏勘探,现有的彻底评估方法遭受了次优融合率以及处理不足的随机策略(例如确定性政策)的失败。为了解决这些问题,我们开发了一种新颖的差异时间差异(VRTD)方法,具有随机策略的线性函数近似以及最佳收敛保证,以及一种探索性方差降低的时间差(EVRTD)方法,用于不充分的随机策略,可相当的融合保证。我们进一步建立了政策评估偏见的线性收敛速率,这对于改善策略优化的总体样本复杂性至关重要。另一方面,与对MDP的政策梯度方法的有限样本分析相比,对AMDP的策略梯度方法的现有研究主要集中在基础马尔可夫流程的限制性假设下(例如,参见Abbasi-e, Yadkori等人,2019年),他们通常缺乏整体样本复杂性的保证。为此,我们开发了随机策略镜下降(SPMD)的平均奖励变体(LAN,2022)。我们建立了第一个$ \ widetilde {\ Mathcal {o}}(\ epsilon^{ - 2})$样品复杂性,用于在生成模型(带有UNICHAIN假设)和Markovian Noise模型(使用Ergodicicic Modele(具有核能的模型)下,使用策略梯度方法求解AMDP假设)。该界限可以进一步改进到$ \ widetilde {\ Mathcal {o}}}(\ epsilon^{ - 1})$用于求解正则化AMDPS。我们的理论优势通过数值实验来证实。
translated by 谷歌翻译
具有多个耦合序列的随机近似(SA)在机器学习中发现了广泛的应用,例如双光线学习和增强学习(RL)。在本文中,我们研究了具有多个耦合序列的非线性SA的有限时间收敛。与现有的多时间分析不同,我们寻求方案,在这些方案中,细粒度分析可以为多序列单次尺度SA(STSA)提供严格的性能保证。我们分析的核心是在许多应用中具有多序列SA中固定点的平滑度。当所有序列都具有强烈的单调增量时,我们就建立了$ \ Mathcal {o}(\ epsilon^{ - 1})$的迭代复杂性,以实现$ \ epsilon $ -Accuracy,从而改善了现有的$ \ Mathcal {O} {O}(O}(O})(O}(O}(O})) \ epsilon^{ - 1.5})$对于两个耦合序列的复杂性。当除了主序列外具有强烈单调增量时,我们建立了$ \ Mathcal {o}(\ epsilon^{ - 2})$的迭代复杂性。我们的结果的优点在于,将它们应用于随机的二聚体和组成优化问题,以及RL问题会导致对其现有性能保证的放松假设或改进。
translated by 谷歌翻译
多功能钢筋学习已成功应用于许多挑战性问题。尽管有这些经验成功,但对不同算法的理论理解缺乏,主要是由于状态 - 行动空间的指数增长与代理人数引起的维度诅咒。我们研究了多蛋白线性二次调节剂(LQR)的基本问题,在该刻度部分可互换的情况下。在此设置中,我们开发了一个分层演员 - 批评算法,其计算复杂性独立于代理总数,并证明了其全局线性融合到最佳政策。由于LQRS经常用于近似一般动态系统,本文提供了更好地理解一般分层平均场多功能增强学习的重要一步。
translated by 谷歌翻译
在这项工作中,我们研究了解决强化学习问题的基于政策的方法,其中采用了非政策性采样和线性函数近似进行政策评估,以及包括自然政策梯度(NPG)在内的各种政策更新规则,用于政策更新。为了在致命三合会的存在下解决政策评估子问题,我们提出了一个通用算法的多步型TD学习框架,具有广义的重要性抽样比率,其中包括两个特定的算法:$ \ lambda $ Q Q $ Q Q $ - 跟踪和双面$ Q $ - 跟踪。通用算法是单个时间尺度,具有可证明的有限样本保证,并克服了非政策学习中的高方差问题。至于策略更新,我们仅使用Bellman操作员的收缩属性和单调性属性提供通用分析,以在各种策略更新规则下建立几何融合。重要的是,通过将NPG视为实施政策迭代的近似方法,我们在不引入正则化的情况下建立了NPG的几何融合,并且不使用现有文献中的镜像下降类型的分析类型。将策略更新的几何融合与策略评估的有限样本分析相结合,我们首次建立了整​​体$ \ Mathcal {o}(\ Epsilon^{ - 2})$样本复杂性以找到最佳策略(最多达到函数近似误差)使用基于策略的方法和线性函数近似下的基于策略的方法。
translated by 谷歌翻译
In many sequential decision-making problems one is interested in minimizing an expected cumulative cost while taking into account risk, i.e., increased awareness of events of small probability and high consequences. Accordingly, the objective of this paper is to present efficient reinforcement learning algorithms for risk-constrained Markov decision processes (MDPs), where risk is represented via a chance constraint or a constraint on the conditional value-at-risk (CVaR) of the cumulative cost. We collectively refer to such problems as percentile risk-constrained MDPs. Specifically, we first derive a formula for computing the gradient of the Lagrangian function for percentile riskconstrained MDPs. Then, we devise policy gradient and actor-critic algorithms that (1) estimate such gradient, (2) update the policy in the descent direction, and (3) update the Lagrange multiplier in the ascent direction. For these algorithms we prove convergence to locally optimal policies. Finally, we demonstrate the effectiveness of our algorithms in an optimal stopping problem and an online marketing application.
translated by 谷歌翻译