Temporal difference (TD) learning is a simple algorithm for policy evaluation in reinforcement learning. The performance of TD learning is affected by high variance and it can be naturally enhanced with variance reduction techniques, such as the Stochastic Variance Reduced Gradient (SVRG) method. Recently, multiple works have sought to fuse TD learning with SVRG to obtain a policy evaluation method with a geometric rate of convergence. However, the resulting convergence rate is significantly weaker than what is achieved by SVRG in the setting of convex optimization. In this work we utilize a recent interpretation of TD-learning as the splitting of the gradient of an appropriately chosen function, thus simplifying the algorithm and fusing TD with SVRG. We prove a geometric convergence bound with predetermined learning rate of 1/8, that is identical to the convergence bound available for SVRG in the convex setting.
translated by 谷歌翻译
具有线性函数近似的贪婪GQ,最初在\ cite {maei2010toward}中提出,是一种基于价值的基础外算法,用于增强增强学习中的最佳控制,并且具有非线性的两个时间尺度结构,具有非convex目标函数。本文开发其有限的时间误差范围。我们表明,贪婪的GQ算法在I.I.D. \ serat和$ \ Mathcal {O}下({\ log t}({\ log t})下,贪婪的算法的收敛如$ \ Mathcal {O}({1}/{{1}/{\ sqrt {t}})$ /{\ sqrt {t}})$在马尔可夫设置下。我们进一步设计了使用嵌套环方法的香草贪婪-GQ算法的变体,并证明其样品复杂性为$ \ Mathcal {o}({\ log(1/\ epsilon)\ Epsilon^epsilon^{ - 2}}}}}} )$,与香草贪婪的GQ之一相匹配。我们的有限时间误差界限与用于一般平滑非凸优化问题的随机梯度下降算法之一匹配。我们的有限样本分析提供了理论指南,以选择在实践中选择更快的融合的步骤尺寸,并建议在收敛速度和获得的政策质量之间进行权衡。本文我们的技术提供了一种通用方法,用于对非凸的两个基于时值的强化学习算法进行有限样本分析。
translated by 谷歌翻译
本文分析了双模的彼此优化随机算法框架。 Bilevel优化是一类表现出两级结构的问题,其目标是使具有变量的外目标函数最小化,该变量被限制为对(内部)优化问题的最佳解决方案。我们考虑内部问题的情况是不受约束的并且强烈凸起的情况,而外部问题受到约束并具有平滑的目标函数。我们提出了一种用于解决如此偏纤维问题的两次时间尺度随机近似(TTSA)算法。在算法中,使用较大步长的随机梯度更新用于内部问题,而具有较小步长的投影随机梯度更新用于外部问题。我们在各种设置下分析了TTSA算法的收敛速率:当外部问题强烈凸起(RESP。〜弱凸)时,TTSA算法查找$ \ MATHCAL {O}(k ^ { - 2/3})$ -Optimal(resp。〜$ \ mathcal {o}(k ^ {-2/5})$ - 静止)解决方案,其中$ k $是总迭代号。作为一个应用程序,我们表明,两个时间尺度的自然演员 - 批评批评近端策略优化算法可以被视为我们的TTSA框架的特殊情况。重要的是,与全球最优政策相比,自然演员批评算法显示以预期折扣奖励的差距,以$ \ mathcal {o}(k ^ { - 1/4})的速率收敛。
translated by 谷歌翻译
我们考虑了折现成本约束的马尔可夫决策过程(CMDP)策略优化问题,其中代理商试图最大化折扣累计奖励,但受到折扣累积公用事业的许多限制。为了解决这个受约束的优化程序,我们研究了经典原始偶性方法的在线参与者 - 批判性变体,其中使用来自基本时间变化的马尔可夫过程产生的单个轨迹的样品估算了原始功能和双重函数的梯度。这种在线原始双重自然参与者批评算法维护并迭代更新三个变量:双变量(或拉格朗日乘数),一个原始变量(或actor)以及用于估算原始变量和偶变量的梯度的评论变量。这些变量同时更新,但在不同的时间尺度上(使用不同的步骤尺寸),它们都相互交织在一起。我们的主要贡献是得出该算法与CMDP问题全局最佳收敛的有限时间分析。具体而言,我们表明,在适当的步骤中,最佳差距和约束违规的情况下,以$ \ mathcal {o}(1/k^{1/6})$的价格收敛到零,其中k是数字。迭代。据我们所知,本文是第一个研究用于解决CMDP问题的在线原始偶发参与者方法的有限时间复杂性。我们还通过数值模拟来验证该算法的有效性。
translated by 谷歌翻译
强调时间差异(ETD)学习(Sutton et al。,2016)是一种成功的方法,可以通过功能近似进行政体值函数评估。尽管已显示ETD渐近地收敛到理想的值函数,但众所周知,ETD通常会遇到较大的方差,因此其样品复杂性可以随迭代次数的数量而迅速地增加。在这项工作中,我们提出了一种新的ETD方法,称为per-eTD(即定期重新启动-ETD),该方法仅在评估参数的每个迭代中重新启动和更新后续跟踪。此外,Per-ETD的设计是重新启动时期的对数增加的设计与迭代次数的数量,这确保了差异和偏见之间的最佳折衷,并使均消失了。我们表明,每个ETD收敛到与ETD相同的理想固定点,但提高了ETD的指数样品复杂性为多项式。我们的实验验证了Per-ETD的出色性能及其优于ETD的优势。
translated by 谷歌翻译
我们研究了多智能经纪增强学习的政策评估问题,其中一组代理商,共同观察到的国家和私人本地行动和奖励,协作,以通过连接的无向网络通过本地计算和通信学习给定策略的价值函数。各种大型多种代理系统中出现此问题,包括电网,智能交通系统,无线传感器网络和多代理机器人。当状态动作空间的尺寸大时,广泛使用具有线性函数近似的时间差异学习。在本文中,我们开发了一种新的分布式时间差异学习算法,量化其有限时间性能。我们的算法将分布式随机原始方法与基于同型的方法进行了自适应调整学习率的方法,以便通过从因果导轨轨迹中采用新鲜的在线样本来最小化平均投影的Bellman误差。我们明确考虑了采样的Markovian性质,并改善了从$ O(1 / \ sqrt {t})$到〜$ o(1 / t)$的最佳已知的有限时间误差,其中$ t $迭代的总数。
translated by 谷歌翻译
在这项工作中,我们研究了解决强化学习问题的基于政策的方法,其中采用了非政策性采样和线性函数近似进行政策评估,以及包括自然政策梯度(NPG)在内的各种政策更新规则,用于政策更新。为了在致命三合会的存在下解决政策评估子问题,我们提出了一个通用算法的多步型TD学习框架,具有广义的重要性抽样比率,其中包括两个特定的算法:$ \ lambda $ Q Q $ Q Q $ - 跟踪和双面$ Q $ - 跟踪。通用算法是单个时间尺度,具有可证明的有限样本保证,并克服了非政策学习中的高方差问题。至于策略更新,我们仅使用Bellman操作员的收缩属性和单调性属性提供通用分析,以在各种策略更新规则下建立几何融合。重要的是,通过将NPG视为实施政策迭代的近似方法,我们在不引入正则化的情况下建立了NPG的几何融合,并且不使用现有文献中的镜像下降类型的分析类型。将策略更新的几何融合与策略评估的有限样本分析相结合,我们首次建立了整​​体$ \ Mathcal {o}(\ Epsilon^{ - 2})$样本复杂性以找到最佳策略(最多达到函数近似误差)使用基于策略的方法和线性函数近似下的基于策略的方法。
translated by 谷歌翻译
在本文中,我们研究了强大的马尔可夫决策过程(MDPS)的最佳稳健策略和价值功能的非反应性和渐近性能,其中仅从生成模型中求解了最佳的稳健策略和价值功能。尽管在KL不确定性集和$(s,a)$ - 矩形假设的设置中限制了以前专注于可靠MDP的非反应性能的工作,但我们改善了它们的结果,还考虑了其​​他不确定性集,包括$ L_1 $和$ L_1 $和$ \ chi^2 $球。我们的结果表明,当我们假设$(s,a)$ - 矩形在不确定性集上时,示例复杂度大约为$ \ widetilde {o} \ left(\ frac {| \ mathcal {| \ mathcal {s} |^2 | \ mathcal { a} |} {\ varepsilon^2 \ rho^2(1- \ gamma)^4} \ right)$。此外,我们将结果从$(s,a)$ - 矩形假设扩展到$ s $矩形假设。在这种情况下,样本复杂性随选择不确定性集而变化,通常比$(s,a)$矩形假设下的情况大。此外,我们还表明,在$(s,a)$和$ s $ retectangular的假设下,从理论和经验的角度来看,最佳的鲁棒值函数是渐近的正常,典型的速率$ \ sqrt {n} $。
translated by 谷歌翻译
我们研究了线性函数近似的政策评估问题,并且目前具有强烈的最优性保证的高效实用算法。我们首先通过证明在这个问题中建立基线的下限来建立基线和随机错误。特别是,我们在与转换内核的静止分布相关联的实例相关规范中证明了Oracle复杂性下限,并使用本地渐近最低限度机械在随机误差中证明依赖于随机误差的实例相关的下限IID观察模型。现有算法未能匹配这些下限中的至少一个:为了说明,我们分析了时间差异学习的方差减少变体,特别是它未能实现Oracle复杂性下限。为了解决这个问题,我们开发了加速,方差减少的快速时间差算法(VRFTD),其同时匹配两个下限,并达到实例 - 最优性的强烈概念。最后,我们将VRFTD算法扩展到Markovian观察的设置,并提供与I.I.D中的实例相关的收敛结果。设置到与链条的混合时间成比例的乘法因子。我们的理论保证最佳的最佳保证是通过数值实验证实的。
translated by 谷歌翻译
我们研究了平均奖励马尔可夫决策过程(AMDP)的问题,并开发了具有强大理论保证的新型一阶方法,以进行政策评估和优化。由于缺乏勘探,现有的彻底评估方法遭受了次优融合率以及处理不足的随机策略(例如确定性政策)的失败。为了解决这些问题,我们开发了一种新颖的差异时间差异(VRTD)方法,具有随机策略的线性函数近似以及最佳收敛保证,以及一种探索性方差降低的时间差(EVRTD)方法,用于不充分的随机策略,可相当的融合保证。我们进一步建立了政策评估偏见的线性收敛速率,这对于改善策略优化的总体样本复杂性至关重要。另一方面,与对MDP的政策梯度方法的有限样本分析相比,对AMDP的策略梯度方法的现有研究主要集中在基础马尔可夫流程的限制性假设下(例如,参见Abbasi-e, Yadkori等人,2019年),他们通常缺乏整体样本复杂性的保证。为此,我们开发了随机策略镜下降(SPMD)的平均奖励变体(LAN,2022)。我们建立了第一个$ \ widetilde {\ Mathcal {o}}(\ epsilon^{ - 2})$样品复杂性,用于在生成模型(带有UNICHAIN假设)和Markovian Noise模型(使用Ergodicicic Modele(具有核能的模型)下,使用策略梯度方法求解AMDP假设)。该界限可以进一步改进到$ \ widetilde {\ Mathcal {o}}}(\ epsilon^{ - 1})$用于求解正则化AMDPS。我们的理论优势通过数值实验来证实。
translated by 谷歌翻译
Q学习长期以来一直是最受欢迎的强化学习算法之一,几十年来,Q学习的理论分析一直是一个活跃的研究主题。尽管对Q-学习的渐近收敛分析的研究具有悠久的传统,但非肿瘤收敛性直到最近才受到积极研究。本文的主要目的是通过控制系统的观点研究马尔可夫观察模型下异步Q学习的新有限时间分析。特别是,我们引入了Q学习的离散时间变化的开关系统模型,并减少了分析的步骤尺寸,这显着改善了使用恒定步骤尺寸的开关系统分析的最新开发,并导致\(\(\)(\) Mathcal {o} \ left(\ sqrt {\ frac {\ log k} {k}}} \ right)\)\)\)\)\)\)\)\)与大多数艺术状态相当或更好。同时,新应用了使用类似转换的技术,以避免通过减小的步骤尺寸提出的分析中的难度。提出的分析带来了其他见解,涵盖了不同的方案,并提供了新的简化模板,以通过其独特的连接与离散时间切换系统的独特联系来加深我们对Q学习的理解。
translated by 谷歌翻译
In large-scale machine learning, recent works have studied the effects of compressing gradients in stochastic optimization in order to alleviate the communication bottleneck. These works have collectively revealed that stochastic gradient descent (SGD) is robust to structured perturbations such as quantization, sparsification, and delays. Perhaps surprisingly, despite the surge of interest in large-scale, multi-agent reinforcement learning, almost nothing is known about the analogous question: Are common reinforcement learning (RL) algorithms also robust to similar perturbations? In this paper, we investigate this question by studying a variant of the classical temporal difference (TD) learning algorithm with a perturbed update direction, where a general compression operator is used to model the perturbation. Our main technical contribution is to show that compressed TD algorithms, coupled with an error-feedback mechanism used widely in optimization, exhibit the same non-asymptotic theoretical guarantees as their SGD counterparts. We then extend our results significantly to nonlinear stochastic approximation algorithms and multi-agent settings. In particular, we prove that for multi-agent TD learning, one can achieve linear convergence speedups in the number of agents while communicating just $\tilde{O}(1)$ bits per agent at each time step. Our work is the first to provide finite-time results in RL that account for general compression operators and error-feedback in tandem with linear function approximation and Markovian sampling. Our analysis hinges on studying the drift of a novel Lyapunov function that captures the dynamics of a memory variable introduced by error feedback.
translated by 谷歌翻译
部署效率是许多实际应用程序应用(RL)的重要标准。尽管社区的兴趣越来越大,但对于该问题缺乏正式的理论表述。在本文中,我们从“具有约束的优化”的角度提出了一种用于部署有效的RL(DE-RL)的公式:我们有兴趣探索MDP并在最小值{部署复杂性}中获得近乎最佳的策略。 ,而在每个部署中,策略可以采样大量数据。使用有限的摩尼子线性MDP作为具体的结构模型,我们通过建立信息理论下限,并提供实现最佳部署效率的算法来揭示实现部署效率的基本限制。此外,我们对DE-RL的配方是灵活的,可以作为其他实际相关设置的基础;我们将“安全的DE-RL”和“样本有效的DE-RL”作为两个例子,这可能是值得将来的研究。
translated by 谷歌翻译
我们研究具有多个奖励价值函数的马尔可夫决策过程(MDP)的政策优化,应根据给定的标准共同优化,例如比例公平(平滑凹面标量),硬约束(约束MDP)和Max-Min Trade-离开。我们提出了一个改变锚定的正规自然政策梯度(ARNPG)框架,该框架可以系统地将良好表现的一阶方法中的思想纳入多目标MDP问题的策略优化算法的设计。从理论上讲,基于ARNPG框架的设计算法实现了$ \ tilde {o}(1/t)$全局收敛,并具有精确的梯度。从经验上讲,与某些现有的基于策略梯度的方法相比,ARNPG引导的算法在精确梯度和基于样本的场景中也表现出卓越的性能。
translated by 谷歌翻译
我们考虑解决强大的马尔可夫决策过程(MDP)的问题,该过程涉及一组折扣,有限状态,有限的动作空间MDP,具有不确定的过渡核。计划的目的是找到一项强大的政策,以优化针对过渡不确定性的最坏情况值,从而将标准MDP计划作为特殊情况。对于$(\ Mathbf {s},\ Mathbf {a})$ - 矩形不确定性集,我们开发了一种基于策略的一阶方法,即稳健的策略镜像下降(RPMD),并建立$ \ Mathcal {o }(\ log(1/\ epsilon))$和$ \ Mathcal {o}(1/\ epsilon)$迭代复杂性,用于查找$ \ epsilon $ -optimal策略,并带有两个增加的步骤式方案。 RPMD的先前收敛适用于任何Bregman差异,前提是政策空间在以初始政策为中心时通过差异测量的半径限制了半径。此外,当布雷格曼的分歧对应于平方的欧几里得距离时,我们建立了一个$ \ mathcal {o}(\ max \ {1/\ epsilon,1/(\ eta \ eTa \ epsilon^2)\ epsilon^2)\任何常量的步进$ \ eta $。对于Bregman差异的一般类别,如果不确定性集满足相对强的凸度,则还为RPMD建立了类似的复杂性。当仅通过与名义环境的在线互动获得一阶信息时,我们进一步开发了一个名为SRPMD的随机变体。对于Bregman General Divergences,我们建立了一个$ \ MATHCAL {O}(1/\ Epsilon^2)$和$ \ Mathcal {O}(1/\ Epsilon^3)$样品复杂性,具有两个增加的静态方案。对于Euclidean Bregman Divergence,我们建立了一个$ \ MATHCAL {O}(1/\ Epsilon^3)$样本复杂性,并具有恒定的步骤。据我们所知,所有上述结果似乎是应用于强大的MDP问题的基于策略的一阶方法的新事物。
translated by 谷歌翻译
我们在无限地平线马尔可夫决策过程中考虑批量(离线)策略学习问题。通过移动健康应用程序的推动,我们专注于学习最大化长期平均奖励的政策。我们为平均奖励提出了一款双重强大估算器,并表明它实现了半导体效率。此外,我们开发了一种优化算法来计算参数化随机策略类中的最佳策略。估计政策的履行是通过政策阶级的最佳平均奖励与估计政策的平均奖励之间的差异来衡量,我们建立了有限样本的遗憾保证。通过模拟研究和促进体育活动的移动健康研究的分析来说明该方法的性能。
translated by 谷歌翻译
近年来,动态机制设计引起了计算机科学家和经济学家的极大关注。通过允许代理商在多个回合中与卖方互动,在这种情况下,代理商的奖励功能可能会随着时间而变化并且与国家有关,该框架能够建模丰富的现实世界问题。在这些作品中,通常认为代理商和卖方之间的相互作用遵循马尔可夫决策过程(MDP)。我们专注于此类MDP的奖励和过渡函数的设置,而不是先验地知道,我们正在尝试使用先验收集的数据集恢复最佳机制。在使用函数近似来处理大型状态空间的情况下,只有对功能类表达式的轻度假设,我们能够使用离线增强学习算法设计动态机制。此外,学到的机制大约具有三个关键的逃避:效率,个人理性和真实性。我们的算法基于悲观原则,仅需要对离线数据集的覆盖率进行温和的假设。据我们所知,我们的工作为动态机制设计提供了第一个离线RL算法,而无需假设覆盖范围。
translated by 谷歌翻译
近期在应用于培训深度神经网络和数据分析中的其他优化问题中的非凸优化的优化算法的兴趣增加,我们概述了最近对非凸优化优化算法的全球性能保证的理论结果。我们从古典参数开始,显示一般非凸面问题无法在合理的时间内有效地解决。然后,我们提供了一个问题列表,可以通过利用问题的结构来有效地找到全球最小化器,因为可能的问题。处理非凸性的另一种方法是放宽目标,从找到全局最小,以找到静止点或局部最小值。对于该设置,我们首先为确定性一阶方法的收敛速率提出了已知结果,然后是最佳随机和随机梯度方案的一般理论分析,以及随机第一阶方法的概述。之后,我们讨论了非常一般的非凸面问题,例如最小化$ \ alpha $ -weakly-are-convex功能和满足Polyak-lojasiewicz条件的功能,这仍然允许获得一阶的理论融合保证方法。然后,我们考虑更高阶和零序/衍生物的方法及其收敛速率,以获得非凸优化问题。
translated by 谷歌翻译
受限的强化学习是最大程度地提高预期奖励受到公用事业/成本的限制。但是,由于建模错误,对抗性攻击,非平稳性,训练环境可能与测试环境不一样,导致严重的性能降级和更重要的违反约束。我们提出了一个在模型不确定性下的强大约束强化学习框架,其中MDP不是固定的,而是在某些不确定性集中,目的是确保在不确定性集中满足所有MDP的限制,并最大程度地满足对公用事业/成本的限制不确定性集中最差的奖励性能。我们设计了一种强大的原始双重方法,并在理论上进一步发展了其收敛性,复杂性和可行性的保证。然后,我们研究了$ \ delta $ - 污染不确定性集的具体示例,设计一种在线且无模型的算法,并理论上表征了其样本复杂性。
translated by 谷歌翻译
我们考虑用于加强学习(RL)问题的模型 - 不可知的元学习(MAML)方法,其中目标是找到使用来自Markov决策过程(MDP)表示的多个任务的策略,该方法可以由随机的一步更新实现MDP的政策梯度。特别地,在MAML更新步骤中使用随机梯度对于RL问题至关重要,因为精确梯度的计算需要访问大量可能的轨迹。对于这种制剂,我们提出了一种名为随机梯度元增强学习(SG-MRL)的MAML方法的变型,并研究其收敛性。我们派生了SG-MRL的迭代和样本复杂性,以查找$ \ epsilon $ - 据我们所知,这为模型不可知的元增强学习算法提供了第一个收敛保证。我们进一步展示了我们的结果延伸到在测试时间使用多于一个随机政策梯度方法的情况的情况。最后,我们在几个深入的RL环境中凭证比较SG-MRL和MAML。
translated by 谷歌翻译