我们研究了很少的细粒实体键入(FET)的问题,其中只有几个带注释的实体对每种实体类型提供了上下文。最近,基于及时的调整通过将实体类型分类任务作为“填补空白”的问题来表明在几次射击方案中表现出优越的性能。这允许有效利用预训练的语言模型(PLM)的强语建模能力。尽管当前基于及时的调整方法成功了,但仍有两个主要挑战:(1)提示中的口头化器要么是由外部知识基础手动设计或构建的,而无需考虑目标语料库和标签层次结构信息,而且(2)当前方法主要利用PLM的表示能力,但没有通过广泛的通用域预训练来探索其产生的功率。在这项工作中,我们为由两个模块组成的几个弹药fet提出了一个新颖的框架:(1)实体类型标签解释模块自动学习将类型标签与词汇联系起来,通过共同利用几个播放实例和标签层次结构和标签层次结构,以及(2)基于类型的上下文化实例生成器根据给定实例生成新实例,以扩大培训集以更好地概括。在三个基准数据集上,我们的模型优于大量利润的现有方法。可以在https://github.com/teapot123/fine-graining-entity-typing上找到代码。
translated by 谷歌翻译
对于自然语言处理中的许多任务,将知识从一个域转移到另一个领域至关重要,尤其是当目标域中的可用数据量受到限制时。在这项工作中,我们在指定实体识别(NER)的背景下提出了一种新颖的域适应方法。我们提出了一种两步方法,该方法由可变基本模块和模板模块组成,该模块在简单的描述模式的帮助下利用了预训练的语言模型中捕获的知识。我们的方法简单而通用,可以在几次射击和零拍设置中应用。评估我们在许多不同数据集中的轻量级方法表明,它可以将最新基准的性能提高2-5%的F1分数。
translated by 谷歌翻译
几乎没有命名的实体识别(NER)对于在有限的资源领域中标记的实体标记至关重要,因此近年来受到了适当的关注。现有的几声方法主要在域内设置下进行评估。相比之下,对于这些固有的忠实模型如何使用一些标记的域内示例在跨域NER中执行的方式知之甚少。本文提出了一种两步以理性为中心的数据增强方法,以提高模型的泛化能力。几个数据集中的结果表明,与先前的最新方法相比,我们的模型无形方法可显着提高跨域NER任务的性能,包括反事实数据增强和及时调用方法。我们的代码可在\ url {https://github.com/lifan-yuan/factmix}上获得。
translated by 谷歌翻译
How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
translated by 谷歌翻译
迅速的学习方法通​​过诱导更好的几次表现,在他们仍然遵循基于参数的学习范式的同时,引起了自然语言处理的波动。学习中的遗忘和死记硬背的记忆问题可能会遇到不稳定的概括问题。具体而言,香草及时的学习可能难以利用死记硬背的非典型实例,在完全监督的培训或过度贴身模式的情况下使用低射击数据。为了减轻此类局限性,我们以将知识从记忆中解耦的动机发展为有助于模型在概括和记忆之间取得平衡。与香草及时学习相反,重新启动构造了培训实例中的开放式知识店,并在输入,培训和推理过程中实现检索机制,从而使该模型能够从培训语料库中检索相关环境作为能力为提示增强。广泛的实验表明,Retroppt可以在几次射击和零拍设置中获得更好的性能。此外,我们进一步说明,我们提出的撤退可以通过新数据集获得更好的概括能力。对记忆的详细分析确实显示逆转可以减少语言模型对记忆的依赖;因此,改善下游任务的概括。
translated by 谷歌翻译
With the success of the prompt-tuning paradigm in Natural Language Processing (NLP), various prompt templates have been proposed to further stimulate specific knowledge for serving downstream tasks, e.g., machine translation, text generation, relation extraction, and so on. Existing prompt templates are mainly shared among all training samples with the information of task description. However, training samples are quite diverse. The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space. To exploit the unique task-related information, we imitate the human decision process which aims to find the contrastive attributes between the objective factual and their potential counterfactuals. Thus, we propose the \textbf{C}ounterfactual \textbf{C}ontrastive \textbf{Prompt}-Tuning (CCPrompt) approach for many-class classification, e.g., relation classification, topic classification, and entity typing. Compared with simple classification tasks, these tasks have more complex finite-label spaces and are more rigorous for prompts. First of all, we prune the finite label space to construct fact-counterfactual pairs. Then, we exploit the contrastive attributes by projecting training instances onto every fact-counterfactual pair. We further set up global prototypes corresponding with all contrastive attributes for selecting valid contrastive attributes as additional tokens in the prompt template. Finally, a simple Siamese representation learning is employed to enhance the robustness of the model. We conduct experiments on relation classification, topic classification, and entity typing tasks in both fully supervised setting and few-shot setting. The results indicate that our model outperforms former baselines.
translated by 谷歌翻译
We propose P4E, an identify-and-localize event detection framework that integrates the best of few-shot prompting and structured prediction. Our framework decomposes event detection into an identification task and a localization task. For the identification task, which we formulate as multi-label classification, we leverage cloze-based prompting to align our objective with the pre-training task of language models, allowing our model to quickly adapt to new event types. We then employ an event type-agnostic sequence labeling model to localize the event trigger conditioned on the identification output. This heterogeneous model design allows P4E to quickly learn new event types without sacrificing the ability to make structured predictions. Our experiments demonstrate the effectiveness of our proposed design, and P4E shows superior performance for few-shot event detection on benchmark datasets FewEvent and MAVEN and comparable performance to SOTA for fully-supervised event detection on ACE.
translated by 谷歌翻译
We present Pre-trained Machine Reader (PMR), a novel method to retrofit Pre-trained Language Models (PLMs) into Machine Reading Comprehension (MRC) models without acquiring labeled data. PMR is capable of resolving the discrepancy between model pre-training and downstream fine-tuning of existing PLMs, and provides a unified solver for tackling various extraction tasks. To achieve this, we construct a large volume of general-purpose and high-quality MRC-style training data with the help of Wikipedia hyperlinks and design a Wiki Anchor Extraction task to guide the MRC-style pre-training process. Although conceptually simple, PMR is particularly effective in solving extraction tasks including Extractive Question Answering and Named Entity Recognition, where it shows tremendous improvements over previous approaches especially under low-resource settings. Moreover, viewing sequence classification task as a special case of extraction task in our MRC formulation, PMR is even capable to extract high-quality rationales to explain the classification process, providing more explainability of the predictions.
translated by 谷歌翻译
与伯特(Bert)等语言模型相比,已证明知识增强语言表示的预培训模型在知识基础构建任务(即〜关系提取)中更有效。这些知识增强的语言模型将知识纳入预训练中,以生成实体或关系的表示。但是,现有方法通常用单独的嵌入表示每个实体。结果,这些方法难以代表播出的实体和大量参数,在其基础代币模型之上(即〜变压器),必须使用,并且可以处理的实体数量为由于内存限制,实践限制。此外,现有模型仍然难以同时代表实体和关系。为了解决这些问题,我们提出了一个新的预培训模型,该模型分别从图书中学习实体和关系的表示形式,并分别在文本中跨越跨度。通过使用SPAN模块有效地编码跨度,我们的模型可以代表实体及其关系,但所需的参数比现有模型更少。我们通过从Wikipedia中提取的知识图对我们的模型进行了预训练,并在广泛的监督和无监督的信息提取任务上进行了测试。结果表明,我们的模型比基线学习对实体和关系的表现更好,而在监督的设置中,微调我们的模型始终优于罗伯塔,并在信息提取任务上取得了竞争成果。
translated by 谷歌翻译
Pre-trained Language Models (PLMs) have been applied in NLP tasks and achieve promising results. Nevertheless, the fine-tuning procedure needs labeled data of the target domain, making it difficult to learn in low-resource and non-trivial labeled scenarios. To address these challenges, we propose Prompt-based Text Entailment (PTE) for low-resource named entity recognition, which better leverages knowledge in the PLMs. We first reformulate named entity recognition as the text entailment task. The original sentence with entity type-specific prompts is fed into PLMs to get entailment scores for each candidate. The entity type with the top score is then selected as final label. Then, we inject tagging labels into prompts and treat words as basic units instead of n-gram spans to reduce time complexity in generating candidates by n-grams enumeration. Experimental results demonstrate that the proposed method PTE achieves competitive performance on the CoNLL03 dataset, and better than fine-tuned counterparts on the MIT Movie and Few-NERD dataset in low-resource settings.
translated by 谷歌翻译
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF-better few-shot fine-tuning of language models 1 -a suite of simple and complementary techniques for finetuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning. 2 * The first two authors contributed equally. 1 Alternatively, language models' best friends forever. 2 Our implementation is publicly available at https:// github.com/princeton-nlp/LM-BFF.
translated by 谷歌翻译
Neural language representation models such as BERT pre-trained on large-scale corpora can well capture rich semantic patterns from plain text, and be fine-tuned to consistently improve the performance of various NLP tasks. However, the existing pre-trained language models rarely consider incorporating knowledge graphs (KGs), which can provide rich structured knowledge facts for better language understanding. We argue that informative entities in KGs can enhance language representation with external knowledge. In this paper, we utilize both large-scale textual corpora and KGs to train an enhanced language representation model (ERNIE), which can take full advantage of lexical, syntactic, and knowledge information simultaneously. The experimental results have demonstrated that ERNIE achieves significant improvements on various knowledge-driven tasks, and meanwhile is comparable with the state-of-the-art model BERT on other common NLP tasks. The source code and experiment details of this paper can be obtained from https:// github.com/thunlp/ERNIE.
translated by 谷歌翻译
大型预训练的语言模型(PLM)的最新进展导致了自然语言理解(NLU)任务的令人印象深刻的增长,并具有特定于任务的微调。但是,直接调整PLM在很大程度上依赖大量的标记实例,这些实例通常很难获得。迅速对PLM的调整已被证明对各种少数次任务很有价值。现有的作品研究基于迅速的NLU任务的基于及时的调整,主要集中于用语言器来得出正确的标签单词或生成及时的模板,以从PLM中启发语义。此外,还对常规数据增强方法进行了验证,可用于少量射击任务。但是,目前几乎没有针对基于及时的调整范式设计的数据增强方法。因此,我们研究了迅速的少数射击学习者的新数据增强问题。由于标签语义对于迅速的调整至关重要,因此我们提出了一种新颖的标签引导数据增强方法促进DA,该方法利用了丰富的标签语义信息以进行数据增强。很少的文本分类任务的广泛实验结果表明,我们提出的框架通过有效利用标签语义和数据扩展来实现自然语言理解来实现卓越的性能。
translated by 谷歌翻译
Triplet extraction aims to extract entities and their corresponding relations in unstructured text. Most existing methods train an extraction model on high-quality training data, and hence are incapable of extracting relations that were not observed during training. Generalizing the model to unseen relations typically requires fine-tuning on synthetic training data which is often noisy and unreliable. In this paper, we argue that reducing triplet extraction to a template filling task over a pre-trained language model can equip the model with zero-shot learning capabilities and enable it to leverage the implicit knowledge in the language model. Embodying these ideas, we propose a novel framework, ZETT (ZEro-shot Triplet extraction by Template infilling), that is based on end-to-end generative transformers. Our experiments show that without any data augmentation or pipeline systems, ZETT can outperform previous state-of-the-art models with 25% less parameters. We further show that ZETT is more robust in detecting entities and can be incorporated with automatically generated templates for relations.
translated by 谷歌翻译
最近,与“预训练,及时和预测”的新范式相比,与“预训练,微调”范式相比,新的范式“预训练,及时和预测”取得了显着的成就。在基于及时的GPT-3成功之后,一系列基于蒙版的语言模型(MLM)(例如Bert,Roberta)及时学习方法变得流行并广泛使用。但是,另一个有效的预训练的判别模型Electra可能被忽略了。在本文中,我们尝试使用拟议的替换代替令牌检测(RTD)基于基于的及时学习方法来完成零摄像的几个NLP任务。实验结果表明,基于RTD-Prompt学习的Electra模型可达到令人惊讶的最先进的零拍性能。在数字上,与MLM-Roberta-Large和MLM-Bert-Large相比,我们的RTD-Electra-Large在所有15个任务上平均提高了约8.4%和13.7%。特别是在SST-2任务上,我们的RTD-Electra-Large在没有任何培训数据的情况下达到了令人惊讶的90.1%精度。总体而言,与预先训练的蒙版语言模型相比,预先训练的代替令牌检测模型在零拍学习中的性能更好。因此,Electra是一位出色的零球学习者。源代码可在以下网址获得:https://github.com/nishiwen1214/rtd-electra。
translated by 谷歌翻译
快速学习已成为现代自然语言处理的新范式,它直接适应培训的语言模型(PLMS)到$ CLOZE $ -Style预测,自回归建模或序列到序列生成,从而导致各种任务的表现。但是,尚未提出及时学习的标准实施框架,以及大多数现有的及时学习码条,通常是不受管制的,仅为特定方案提供有限的实现。由于有许多细节,例如模板策略,初始化策略和语言化策略等,因此需要在快速学习中考虑,从业者面临障碍,以便快速调整所需的迅速学习方法到他们的应用程序。在本文中,我们展示了{OpenPrompt},一个统一的易于使用的工具包,可以通过PLMS快速学习。 OpenPrompt是一项研究型框架,配备了效率,模块化和可扩展性,其组合性允许自由地将不同的PLMS,任务格式和提示模块组合在统一的范例中。用户可以宽松地部署快速学习框架,并在没有约束的情况下在不同的NLP任务上评估它们的泛化。 OpenPrompt在{\ url {https://github.com/thunlp/openprompt}}上公开发布。
translated by 谷歌翻译
Recent studies have revealed the intriguing few-shot learning ability of pretrained language models (PLMs): They can quickly adapt to a new task when fine-tuned on a small amount of labeled data formulated as prompts, without requiring abundant task-specific annotations. Despite their promising performance, most existing few-shot approaches that only learn from the small training set still underperform fully supervised training by nontrivial margins. In this work, we study few-shot learning with PLMs from a different perspective: We first tune an autoregressive PLM on the few-shot samples and then use it as a generator to synthesize a large amount of novel training samples which augment the original training set. To encourage the generator to produce label-discriminative samples, we train it via weighted maximum likelihood where the weight of each token is automatically adjusted based on a discriminative meta-learning objective. A classification PLM can then be fine-tuned on both the few-shot and the synthetic samples with regularization for better generalization and stability. Our approach FewGen achieves an overall better result across seven classification tasks of the GLUE benchmark than existing few-shot learning methods, improving no-augmentation methods by 5+ average points, and outperforming augmentation methods by 3+ average points.
translated by 谷歌翻译
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
translated by 谷歌翻译
Ultra-fine entity typing (UFET) predicts extremely free-formed types (e.g., president, politician) of a given entity mention (e.g., Joe Biden) in context. State-of-the-art (SOTA) methods use the cross-encoder (CE) based architecture. CE concatenates the mention (and its context) with each type and feeds the pairs into a pretrained language model (PLM) to score their relevance. It brings deeper interaction between mention and types to reach better performance but has to perform N (type set size) forward passes to infer types of a single mention. CE is therefore very slow in inference when the type set is large (e.g., N = 10k for UFET). To this end, we propose to perform entity typing in a recall-expand-filter manner. The recall and expand stages prune the large type set and generate K (K is typically less than 256) most relevant type candidates for each mention. At the filter stage, we use a novel model called MCCE to concurrently encode and score these K candidates in only one forward pass to obtain the final type prediction. We investigate different variants of MCCE and extensive experiments show that MCCE under our paradigm reaches SOTA performance on ultra-fine entity typing and is thousands of times faster than the cross-encoder. We also found MCCE is very effective in fine-grained (130 types) and coarse-grained (9 types) entity typing. Our code is available at \url{https://github.com/modelscope/AdaSeq/tree/master/examples/MCCE}.
translated by 谷歌翻译
已显示迅速学习可以在大多数文本分类任务中实现近调调节性能,但很少有培训示例。对于样品稀缺的NLP任务是有利的。在本文中,我们试图将其应用于实际情况,即恢复信息提取,并增强现有方法,以使其更适用于简历信息提取任务。特别是,我们根据简历的文本特征创建了多组手动模板和语言器。此外,我们比较了蒙版语言模型(MLM)预培训语言模型(PLM)和SEQ2SEQ PLM在此任务上的性能。此外,我们改进了口头设计的设计方法,用于知识渊博的及时调整,以便为其他基于应用程序的NLP任务的迅速模板和语言设计的设计提供了示例。在这种情况下,我们提出了手动知识渊博的语言器(MKV)的概念。构造与应用程序方案相对应的知识渊博的口头表的规则。实验表明,基于我们的规则设计的模板和言语器比现有的手动模板更有效,更强大,并自动生成及时方法。已经确定,当前可用的自动提示方法无法与手动设计的及时模板竞争一些现实的任务方案。最终混淆矩阵的结果表明,我们提出的MKV显着解决了样本不平衡问题。
translated by 谷歌翻译