已显示迅速学习可以在大多数文本分类任务中实现近调调节性能,但很少有培训示例。对于样品稀缺的NLP任务是有利的。在本文中,我们试图将其应用于实际情况,即恢复信息提取,并增强现有方法,以使其更适用于简历信息提取任务。特别是,我们根据简历的文本特征创建了多组手动模板和语言器。此外,我们比较了蒙版语言模型(MLM)预培训语言模型(PLM)和SEQ2SEQ PLM在此任务上的性能。此外,我们改进了口头设计的设计方法,用于知识渊博的及时调整,以便为其他基于应用程序的NLP任务的迅速模板和语言设计的设计提供了示例。在这种情况下,我们提出了手动知识渊博的语言器(MKV)的概念。构造与应用程序方案相对应的知识渊博的口头表的规则。实验表明,基于我们的规则设计的模板和言语器比现有的手动模板更有效,更强大,并自动生成及时方法。已经确定,当前可用的自动提示方法无法与手动设计的及时模板竞争一些现实的任务方案。最终混淆矩阵的结果表明,我们提出的MKV显着解决了样本不平衡问题。
translated by 谷歌翻译
最近,与“预训练,及时和预测”的新范式相比,与“预训练,微调”范式相比,新的范式“预训练,及时和预测”取得了显着的成就。在基于及时的GPT-3成功之后,一系列基于蒙版的语言模型(MLM)(例如Bert,Roberta)及时学习方法变得流行并广泛使用。但是,另一个有效的预训练的判别模型Electra可能被忽略了。在本文中,我们尝试使用拟议的替换代替令牌检测(RTD)基于基于的及时学习方法来完成零摄像的几个NLP任务。实验结果表明,基于RTD-Prompt学习的Electra模型可达到令人惊讶的最先进的零拍性能。在数字上,与MLM-Roberta-Large和MLM-Bert-Large相比,我们的RTD-Electra-Large在所有15个任务上平均提高了约8.4%和13.7%。特别是在SST-2任务上,我们的RTD-Electra-Large在没有任何培训数据的情况下达到了令人惊讶的90.1%精度。总体而言,与预先训练的蒙版语言模型相比,预先训练的代替令牌检测模型在零拍学习中的性能更好。因此,Electra是一位出色的零球学习者。源代码可在以下网址获得:https://github.com/nishiwen1214/rtd-electra。
translated by 谷歌翻译
The recent GPT-3 model (Brown et al., 2020) achieves remarkable few-shot performance solely by leveraging a natural-language prompt and a few task demonstrations as input context. Inspired by their findings, we study few-shot learning in a more practical scenario, where we use smaller language models for which fine-tuning is computationally efficient. We present LM-BFF-better few-shot fine-tuning of language models 1 -a suite of simple and complementary techniques for finetuning language models on a small number of annotated examples. Our approach includes (1) prompt-based fine-tuning together with a novel pipeline for automating prompt generation; and (2) a refined strategy for dynamically and selectively incorporating demonstrations into each context. Finally, we present a systematic evaluation for analyzing few-shot performance on a range of NLP tasks, including classification and regression. Our experiments demonstrate that our methods combine to dramatically outperform standard fine-tuning procedures in this low resource setting, achieving up to 30% absolute improvement, and 11% on average across all tasks. Our approach makes minimal assumptions on task resources and domain expertise, and hence constitutes a strong task-agnostic method for few-shot learning. 2 * The first two authors contributed equally. 1 Alternatively, language models' best friends forever. 2 Our implementation is publicly available at https:// github.com/princeton-nlp/LM-BFF.
translated by 谷歌翻译
提示将下游应用程序作为语言建模任务施放,与使用预训练的模型进行标准微调相比,已显示出样本有效的效率。但是,提示的一个陷阱是需要手动设计的模式,其结果可能是不直觉的,需要大量的验证集来调整。为了应对挑战,我们提出了一种全自动提示方法Autoseq:(1)我们在序列到序列模型上采用自然语言提示,从而实现自由形式生成和更大的标签搜索空间; (2)我们提出了标签序列 - 无限长度的短语以口头表达标签 - 这消除了手动模板的需求,并且比单个标签单词更具有表现力; (3)我们使用Beam Search自动生成大量的标签序列候选物,并提出对比度重新排列以获得最佳组合。 Autoseq显着胜过其他无手动设计方法,例如软提示调整,适配器调整和自动搜索单个标签单词;生成的标签序列比各种任务上的精选手动序列更好。我们的方法揭示了几次学习中序列模型的潜力,并阐明了通用通用和自动提示的途径。本文的源代码可以从https://github.com/thunlp/seq2seq-prompt获得。
translated by 谷歌翻译
快速学习已成为现代自然语言处理的新范式,它直接适应培训的语言模型(PLMS)到$ CLOZE $ -Style预测,自回归建模或序列到序列生成,从而导致各种任务的表现。但是,尚未提出及时学习的标准实施框架,以及大多数现有的及时学习码条,通常是不受管制的,仅为特定方案提供有限的实现。由于有许多细节,例如模板策略,初始化策略和语言化策略等,因此需要在快速学习中考虑,从业者面临障碍,以便快速调整所需的迅速学习方法到他们的应用程序。在本文中,我们展示了{OpenPrompt},一个统一的易于使用的工具包,可以通过PLMS快速学习。 OpenPrompt是一项研究型框架,配备了效率,模块化和可扩展性,其组合性允许自由地将不同的PLMS,任务格式和提示模块组合在统一的范例中。用户可以宽松地部署快速学习框架,并在没有约束的情况下在不同的NLP任务上评估它们的泛化。 OpenPrompt在{\ url {https://github.com/thunlp/openprompt}}上公开发布。
translated by 谷歌翻译
How can we extend a pre-trained model to many language understanding tasks, without labeled or additional unlabeled data? Pre-trained language models (PLMs) have been effective for a wide range of NLP tasks. However, existing approaches either require fine-tuning on downstream labeled datasets or manually constructing proper prompts. In this paper, we propose nonparametric prompting PLM (NPPrompt) for fully zero-shot language understanding. Unlike previous methods, NPPrompt uses only pre-trained language models and does not require any labeled data or additional raw corpus for further fine-tuning, nor does it rely on humans to construct a comprehensive set of prompt label words. We evaluate NPPrompt against previous major few-shot and zero-shot learning methods on diverse NLP tasks: including text classification, text entailment, similar text retrieval, and paraphrasing. Experimental results demonstrate that our NPPrompt outperforms the previous best fully zero-shot method by big margins, with absolute gains of 12.8% in accuracy on text classification and 18.9% on the GLUE benchmark.
translated by 谷歌翻译
及时调整是将预训练模型调整到下游任务的极其有效的工具。但是,基于标准及时的方法主要考虑下游任务的足够数据的情况。目前尚不清楚是否可以将优势传输到几杆式制度,在每个下游任务中只有有限的数据。尽管有些作品证明了在几次弹奏设置下及时调整的潜力,但通过搜索离散提示或使用有限数据调整软提示的主流方法仍然非常具有挑战性。通过广泛的实证研究,我们发现迅速调整和完全微调之间的学习差距仍然存在差距。为了弥合差距,我们提出了一个新的及时调整框架,称为软模板调整(STT)。 STT结合了手册和自动提示,并将下游分类任务视为掩盖语言建模任务。对不同设置的全面评估表明,STT可以在不引入其他参数的情况下缩小微调和基于及时的方法之间的差距。值得注意的是,它甚至可以胜过情感分类任务的时间和资源消耗的微调方法。
translated by 谷歌翻译
预训练模型已在许多代码智能任务中有效。这些模型在大规模未标记的语料库中进行了预训练,然后在下游任务中进行了微调。但是,由于预训练和下游任务的输入是不同的形式,因此很难充分探索预训练模型的知识。此外,微调的性能强烈依赖于下游数据的量,而实际上,具有稀缺数据的场景很常见。自然语言处理(NLP)领域的最新研究表明,迅速调整,一种调整的新范式,减轻上述问题并在各种NLP任务中实现了有希望的结果。在迅速调整中,在调整过程中插入的提示提供了特定于任务的知识,这对于具有相对较少数据的任务特别有益。在本文中,我们凭经验评估了代码智能任务中迅速调整的用法和效果。我们对流行的预训练模型Codebert和codet5进行及时调整,并尝试三个代码智能任务,包括缺陷预测,代码摘要和代码翻译。我们的实验结果表明,在所有三个任务中,迅速调整始终优于微调。此外,及时调整在低资源场景中显示出很大的潜力,例如,对于代码摘要,平均将微调的BLEU分数提高了26%以上。我们的结果表明,我们可以调整代码智能任务的迅速调整,以实现更好的性能,尤其是在缺乏特定于任务的数据时,我们可以调整及时调整。
translated by 谷歌翻译
随着预训练的语言模型(PLM)的继续增长,精细调整PLM的硬件和数据要求也会增长。因此,研究人员提出了一种称为\ textit {提示学习}的较轻方法。但是,在调查过程中,我们观察到及时的学习方法是脆弱的,很容易被一些非法构造的提示攻击,从而导致分类错误和PLM的严重安全问题。当前的大多数研究都忽略了基于及时方法的安全问题。因此,在本文中,我们提出了一种恶意提示模板构建方法(\ textbf {stressAttack})来探测PLM的安全性能。研究了几种不友好的模板构建方法,以指导模型错误分类任务。在三个数据集和三个PLM上进行了广泛的实验证明了我们提出的方法提示的有效性。我们还进行实验,以验证我们的方法是否适用于几种镜头。
translated by 谷歌翻译
信息提取(IE)一直是NLP的重要任务之一。此外,信息提取的最关键应用程序方案之一是简历的信息提取。通过对简历的每个部分进行分类来获得构造的文本。存储这些文本以供以后进行搜索和分析很方便。此外,构造的简历数据也可以在AI简历筛选系统中使用。大大降低人力资源的劳动成本。这项研究旨在将简历的信息提取任务转变为简单的句子分类任务。基于先前研究生产的英语简历数据集。改进了分类规则,以创建简历的更大,更细粒度的分类数据集。该语料库还用于测试一些当前主流培训语言模型(PLMS)性能。Furthermore,为了探索培训样本数量与简历数据集的正确性率之间的关系,我们还与培训进行了比较实验一组不同的火车集尺寸。最终的多个实验结果表明,具有改进的注释规则和数据集的样本大小的简历数据集提高了原始简历数据集的准确性。
translated by 谷歌翻译
大型预训练的语言模型(PLM)的最新进展导致了自然语言理解(NLU)任务的令人印象深刻的增长,并具有特定于任务的微调。但是,直接调整PLM在很大程度上依赖大量的标记实例,这些实例通常很难获得。迅速对PLM的调整已被证明对各种少数次任务很有价值。现有的作品研究基于迅速的NLU任务的基于及时的调整,主要集中于用语言器来得出正确的标签单词或生成及时的模板,以从PLM中启发语义。此外,还对常规数据增强方法进行了验证,可用于少量射击任务。但是,目前几乎没有针对基于及时的调整范式设计的数据增强方法。因此,我们研究了迅速的少数射击学习者的新数据增强问题。由于标签语义对于迅速的调整至关重要,因此我们提出了一种新颖的标签引导数据增强方法促进DA,该方法利用了丰富的标签语义信息以进行数据增强。很少的文本分类任务的广泛实验结果表明,我们提出的框架通过有效利用标签语义和数据扩展来实现自然语言理解来实现卓越的性能。
translated by 谷歌翻译
文本匹配是信息检索和自然语言处理的基本技术。文本匹配任务共享确定两个给定文本之间关系的相同范例。这些关系因任务而异,例如〜在文档检索中相关性,释义识别中的语义一致性和所回答的可回答判断。但是,文本匹配的基本信号保留在有限范围中,即〜精确匹配,语义匹配和推理匹配。理想情况下,良好的文本匹配模型可以学会捕获和汇总这些信号,以实现不同的匹配任务以实现竞争性能,而最近的最新文本匹配模型,例如〜预训练的语言模型(PLM)很难概括。这是因为在特定于任务的数据集上的端到端监督学习使模型过分强调了数据示例偏置和特定于任务的信号,而不是基本的匹配信号。为了克服这个问题,我们采用了专业化的将军培训策略,并将其称为比赛推出。在专业阶段,对不同匹配任务的描述映射到一些提示令牌。在概括阶段,匹配模型通过接受各种匹配任务的培训来探索基本匹配信号。高不同的匹配任务避免了模型拟合特定任务的数据偏差,因此该模型可以专注于学习基本匹配信号。同时,在第一步中获得的提示令牌有助于模型区分不同的特定任务匹配信号。公共数据集上的实验结果表明,匹配点可以提高PLM在文本匹配中的多任务概括能力,并产生更好的内域多任务,外域多任务和新任务适应性性能由以前的微调范式训练的特定于任务模型。
translated by 谷歌翻译
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
translated by 谷歌翻译
对于自然语言处理中的许多任务,将知识从一个域转移到另一个领域至关重要,尤其是当目标域中的可用数据量受到限制时。在这项工作中,我们在指定实体识别(NER)的背景下提出了一种新颖的域适应方法。我们提出了一种两步方法,该方法由可变基本模块和模板模块组成,该模块在简单的描述模式的帮助下利用了预训练的语言模型中捕获的知识。我们的方法简单而通用,可以在几次射击和零拍设置中应用。评估我们在许多不同数据集中的轻量级方法表明,它可以将最新基准的性能提高2-5%的F1分数。
translated by 谷歌翻译
我们研究了很少的细粒实体键入(FET)的问题,其中只有几个带注释的实体对每种实体类型提供了上下文。最近,基于及时的调整通过将实体类型分类任务作为“填补空白”的问题来表明在几次射击方案中表现出优越的性能。这允许有效利用预训练的语言模型(PLM)的强语建模能力。尽管当前基于及时的调整方法成功了,但仍有两个主要挑战:(1)提示中的口头化器要么是由外部知识基础手动设计或构建的,而无需考虑目标语料库和标签层次结构信息,而且(2)当前方法主要利用PLM的表示能力,但没有通过广泛的通用域预训练来探索其产生的功率。在这项工作中,我们为由两个模块组成的几个弹药fet提出了一个新颖的框架:(1)实体类型标签解释模块自动学习将类型标签与词汇联系起来,通过共同利用几个播放实例和标签层次结构和标签层次结构,以及(2)基于类型的上下文化实例生成器根据给定实例生成新实例,以扩大培训集以更好地概括。在三个基准数据集上,我们的模型优于大量利润的现有方法。可以在https://github.com/teapot123/fine-graining-entity-typing上找到代码。
translated by 谷歌翻译
最近的几种方法,例如参数有效的微调(PEFT)和模式开发训练(PET),在标签筛选设置中取得了令人印象深刻的结果。但是,它们很难使用,因为它们会受到手动制作的提示的高度可变性,并且通常需要十亿参数语言模型才能达到高精度。为了解决这些缺点,我们提出了SETFIT(句子变压器微调),这是一个有效且迅速的框架,用于对句子变形金刚(ST)进行几次微调。 SetFit首先以对比的暹罗方式对少数文本对进行微调验证的st。然后将所得模型用于生成丰富的文本嵌入,这些嵌入方式用于训练分类头。这个简单的框架不需要任何提示或口头化,并且比现有技术少的参数较少,因此可以实现高精度。我们的实验表明,SetFit通过PEFT和PET技术获得了可比的结果,同时训练的速度更快。我们还表明,SETFIT可以通过简单地切换ST主体来应用于多语言设置。我们的代码可从https://github.com/huggingface/setFit以及我们的数据集获得,网址为https://huggingface.co/setfit。
translated by 谷歌翻译
在本文中,我们描述了我们参与Case-2022的子任务1,即与休闲新闻语料库的事件因果关系识别。我们通过在少数带注释的示例(即几次配置)上利用一组简单但互补的技术来解决因果关系识别(CRI)任务。我们遵循一种基于迅速的预测方法,用于微调LMS,其中CRI任务被视为掩盖语言建模问题(MLM)。这种方法允许LMS在MLM问题上进行本地预先训练,可以直接生成对CRI特异性提示的文本响应。我们将此方法的性能与在整个数据集中训练的集合技术进行比较。我们表现​​最佳的提交仅接受了每班256个实例,整个数据集的一小部分培训,但能够获得第二好的精度(0.82),第三好的精度(0.82)和F1得分。 (0.85)非常接近获胜者团队(0.86)的报道。
translated by 谷歌翻译
With the evergrowing sizes of pre-trained models (PTMs), it has been an emerging practice to only provide the inference APIs for users, namely model-as-a-service (MaaS) setting. To adapt PTMs with model parameters frozen, most current approaches focus on the input side, seeking for powerful prompts to stimulate models for correct answers. However, we argue that input-side adaptation could be arduous due to the lack of gradient signals and they usually require thousands of API queries, resulting in high computation and time costs. In light of this, we present Decoder Tuning (DecT), which in contrast optimizes task-specific decoder networks on the output side. Specifically, DecT first extracts prompt-stimulated output scores for initial predictions. On top of that, we train an additional decoder network on the output representations to incorporate posterior data knowledge. By gradient-based optimization, DecT can be trained within several seconds and requires only one PTM query per sample. Empirically, we conduct extensive natural language understanding experiments and show that DecT significantly outperforms state-of-the-art algorithms with a $10^3\times$ speed-up.
translated by 谷歌翻译
Contrastive learning has become a new paradigm for unsupervised sentence embeddings. Previous studies focus on instance-wise contrastive learning, attempting to construct positive pairs with textual data augmentation. In this paper, we propose a novel Contrastive learning method with Prompt-derived Virtual semantic Prototypes (ConPVP). Specifically, with the help of prompts, we construct virtual semantic prototypes to each instance, and derive negative prototypes by using the negative form of the prompts. Using a prototypical contrastive loss, we enforce the anchor sentence embedding to be close to its corresponding semantic prototypes, and far apart from the negative prototypes as well as the prototypes of other sentences. Extensive experimental results on semantic textual similarity, transfer, and clustering tasks demonstrate the effectiveness of our proposed model compared to strong baselines. Code is available at https://github.com/lemon0830/promptCSE.
translated by 谷歌翻译
With the success of the prompt-tuning paradigm in Natural Language Processing (NLP), various prompt templates have been proposed to further stimulate specific knowledge for serving downstream tasks, e.g., machine translation, text generation, relation extraction, and so on. Existing prompt templates are mainly shared among all training samples with the information of task description. However, training samples are quite diverse. The sharing task description is unable to stimulate the unique task-related information in each training sample, especially for tasks with the finite-label space. To exploit the unique task-related information, we imitate the human decision process which aims to find the contrastive attributes between the objective factual and their potential counterfactuals. Thus, we propose the \textbf{C}ounterfactual \textbf{C}ontrastive \textbf{Prompt}-Tuning (CCPrompt) approach for many-class classification, e.g., relation classification, topic classification, and entity typing. Compared with simple classification tasks, these tasks have more complex finite-label spaces and are more rigorous for prompts. First of all, we prune the finite label space to construct fact-counterfactual pairs. Then, we exploit the contrastive attributes by projecting training instances onto every fact-counterfactual pair. We further set up global prototypes corresponding with all contrastive attributes for selecting valid contrastive attributes as additional tokens in the prompt template. Finally, a simple Siamese representation learning is employed to enhance the robustness of the model. We conduct experiments on relation classification, topic classification, and entity typing tasks in both fully supervised setting and few-shot setting. The results indicate that our model outperforms former baselines.
translated by 谷歌翻译