卷积神经网络已使基于医学图像的诊断有了重大改进。但是,越来越明显的是,这些模型在面对虚假的相关性和数据集转移时易受性能降解,例如,领导者(例如,代表性不足的患者群体的表现不足)。在本文中,我们比较了ADNI MRI数据集上的两个分类方案:使用手动选择的体积特征的简单逻辑回归模型,以及对3D MRI数据训练的卷积神经网络。我们在面对不同的数据集拆分,训练集的性别组成和疾病阶段的情况下评估了受过训练的模型的鲁棒性。与其他成像方式中的早期工作相反,我们没有观察到培训数据集中多数组的模型性能的明确模式。取而代之的是,尽管逻辑回归对数据集组成完全可靠,但我们发现,在培训数据集中包括更多女性受试者时,男性和女性受试者的CNN性能通常会提高。我们假设这可能是由于两性病理学的固有差异。此外,在我们的分析中,Logistic回归模型优于3D CNN,强调了基于先验知识的手动特征规范的实用性,以及需要更强大的自动功能选择。
translated by 谷歌翻译
阿尔茨海默氏病的准确诊断和预后对于开发新疗法和降低相关成本至关重要。最近,随着卷积神经网络的进步,已经提出了深度学习方法,以使用结构MRI自动化这两个任务。但是,这些方法通常缺乏解释性和泛化,预后表现有限。在本文中,我们提出了一个旨在克服这些局限性的新型深框架。我们的管道包括两个阶段。在第一阶段,使用125个3D U-NET来估计整个大脑的体voxelwise等级得分。然后将所得的3D地图融合,以构建一个可解释的3D分级图,以指示结构水平的疾病严重程度。结果,临床医生可以使用该地图来检测受疾病影响的大脑结构。在第二阶段,分级图和受试者的年龄用于使用图卷积神经网络进行分类。基于216名受试者的实验结果表明,与在不同数据集上进行AD诊断和预后的最新方法相比,我们的深框架的竞争性能。此外,我们发现,使用大量的U-NET处理不同的重叠大脑区域,可以提高所提出方法的概括能力。
translated by 谷歌翻译
卷积神经网络(CNN)越来越多地用于自动化磁共振(MR)图像中脑结构的分割,以进行研究。在其他应用中,CNN模型在训练集中的代表性不足时已显示出对某些人口组的偏见。在这项工作中,我们研究了CNN大脑MR分割模型是否有可能在接受不平衡训练集训练时遏制性别或种族偏见。我们使用白人受试者中不同水平的性不平衡训练快速冲浪模型的多个实例。我们分别评估白人男性和白人女性测试集以评估性别偏见的性能,并在黑人男性和黑人女性测试套装上评估它们,以评估潜在的种族偏见。我们发现分割模型性能中的重大性别和种族偏见效应。这些偏见具有很强的空间成分,一些大脑区域表现出比其他大脑更强的偏见。总体而言,我们的结果表明,种族偏见比性偏见更为重要。我们的研究表明,在为基于CNN的大脑MR分割的训练集时考虑种族和性别平衡的重要性,以避免通过有偏见的研究研究结果来维持甚至加剧现有的健康不平等。
translated by 谷歌翻译
用于预测神经影像数据的深度学习算法在各种应用中显示出巨大的希望。先前的工作表明,利用数据的3D结构的深度学习模型可以在几个学习任务上胜过标准机器学习。但是,该领域的大多数先前研究都集中在成年人的神经影像学数据上。在一项大型纵向发展研究的青少年大脑和认知发展(ABCD)数据集中,我们检查了结构性MRI数据,以预测性别并确定与性别相关的大脑结构变化。结果表明,性别预测准确性异常高(> 97%),训练时期> 200,并且这种准确性随着年龄的增长而增加。大脑区域被确定为研究的任务中最歧视性的,包括主要的额叶区域和颞叶。当评估年龄增加两年的性别预测变化时,揭示了一组更广泛的视觉,扣带和孤立区域。我们的发现表明,即使在较小的年龄范围内,也显示出与性别相关的结构变化模式。这表明,通过查看这些变化与不同的行为和环境因素如何相关,可以研究青春期大脑如何变化。
translated by 谷歌翻译
阿尔茨海默病(AD)是一种不可逆的神经发电疾病的大脑。疾病可能会导致记忆力损失,难以沟通和迷失化。对于阿尔茨海默病的诊断,通常需要一系列尺度来临床评估诊断,这不仅增加了医生的工作量,而且还使诊断结果高度主观。因此,对于阿尔茨海默病,成像手段寻找早期诊断标志物已成为一个首要任务。在本文中,我们提出了一种新颖的3DMGNET架构,该架构是多基体和卷积神经网络的统一框架,以诊断阿尔茨海默病(AD)。该模型使用Open DataSet(ADNI DataSet)培训,然后使用较小的DataSet进行测试。最后,该模型为AD VS NC分类实现了92.133%的精度,并显着降低了模型参数。
translated by 谷歌翻译
临床实践中使用的医学图像是异质的,与学术研究中研究的扫描质量不同。在解剖学,伪影或成像参数不寻常或方案不同的极端情况下,预处理会分解。最需要对这些变化的方法可靠。提出了一种新颖的深度学习方法,以将人脑快速分割为132个区域。提出的模型使用有效的U-NET型网络,并从不同视图和分层关系的交点上受益,以在端到端训练期间融合正交2D平面和脑标签。部署了弱监督的学习,以利用部分标记的数据来进行整个大脑分割和颅内体积(ICV)的估计。此外,数据增强用于通过生成具有较高的脑扫描的磁共振成像(MRI)数据来扩展模型训练,同时保持数据隐私。提出的方法可以应用于脑MRI数据,包括头骨或任何其他工件,而无需预处理图像或性能下降。与最新的一些实验相比,使用了不同的Atlases的几项实验,以评估受过训练模型的分割性能,并且与不同内部和不同内部和不同内部方法的现有方法相比,结果显示了较高的分割精度和鲁棒性。间域数据集。
translated by 谷歌翻译
Purpose: Hard-to-interpret Black-box Machine Learning (ML) were often used for early Alzheimer's Disease (AD) detection. Methods: To interpret eXtreme Gradient Boosting (XGBoost), Random Forest (RF), and Support Vector Machine (SVM) black-box models a workflow based on Shapley values was developed. All models were trained on the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset and evaluated for an independent ADNI test set, as well as the external Australian Imaging and Lifestyle flagship study of Ageing (AIBL), and Open Access Series of Imaging Studies (OASIS) datasets. Shapley values were compared to intuitively interpretable Decision Trees (DTs), and Logistic Regression (LR), as well as natural and permutation feature importances. To avoid the reduction of the explanation validity caused by correlated features, forward selection and aspect consolidation were implemented. Results: Some black-box models outperformed DTs and LR. The forward-selected features correspond to brain areas previously associated with AD. Shapley values identified biologically plausible associations with moderate to strong correlations with feature importances. The most important RF features to predict AD conversion were the volume of the amygdalae, and a cognitive test score. Good cognitive test performances and large brain volumes decreased the AD risk. The models trained using cognitive test scores significantly outperformed brain volumetric models ($p<0.05$). Cognitive Normal (CN) vs. AD models were successfully transferred to external datasets. Conclusion: In comparison to previous work, improved performances for ADNI and AIBL were achieved for CN vs. Mild Cognitive Impairment (MCI) classification using brain volumes. The Shapley values and the feature importances showed moderate to strong correlations.
translated by 谷歌翻译
精神分裂症是一种慢性神经精神疾病,会引起大脑内部的不同结构改变。我们假设将深度学习应用于结构性神经影像学数据集可以检测到与疾病相关的改变,并提高分类和诊断准确性。我们使用单一可用的,常规的T1加权MRI扫描测试了这一假设,我们使用标准后处理方法从中提取了3D全脑结构。然后在三个开放数据集上开发,优化和评估了一个深度学习模型,并对精神分裂症患者进行T1加权MRI扫描。我们提出的模型优于基准模型,该模型还使用3D CNN体系结构对结构MR图像进行了训练。我们的模型几乎能够完美地(ROC曲线下的区域= 0.987),将精神分裂症患者与看不见的结构MRI扫描中的健康对照区分开。区域分析将皮质下区域和心室局部作为最预测的大脑区域。皮层结构在人类的认知,情感和社会功能中起关键作用,这些区域的结构异常与精神分裂症有关。我们的发现证实了精神分裂症与皮质下大脑结构的广泛改变有关,皮层结构信息在诊断分类中提供了突出的特征。总之,这些结果进一步证明了深度学习的潜力,以改善精神分裂症的诊断,并从单个标准的T1加权脑MRI中确定其结构性神经影像学特征。
translated by 谷歌翻译
Accurate diagnosis of Alzheimer's disease (AD) is both challenging and time consuming. With a systematic approach for early detection and diagnosis of AD, steps can be taken towards the treatment and prevention of the disease. This study explores the practical application of deep learning models for diagnosis of AD. Due to computational complexity, large training times and limited availability of labelled dataset, a 3D full brain CNN (convolutional neural network) is not commonly used, and researchers often prefer 2D CNN variants. In this study, full brain 3D version of well-known 2D CNNs were designed, trained and tested for diagnosis of various stages of AD. Deep learning approach shows good performance in differentiating various stages of AD for more than 1500 full brain volumes. Along with classification, the deep learning model is capable of extracting features which are key in differentiating the various categories. The extracted features align with meaningful anatomical landmarks, that are currently considered important in identification of AD by experts. An ensemble of all the algorithm was also tested and the performance of the ensemble algorithm was superior to any individual algorithm, further improving diagnosis ability. The 3D versions of the trained CNNs and their ensemble have the potential to be incorporated in software packages that can be used by physicians/radiologists to assist them in better diagnosis of AD.
translated by 谷歌翻译
背景:虽然卷积神经网络(CNN)实现了检测基于磁共振成像(MRI)扫描的阿尔茨海默病(AD)痴呆的高诊断准确性,但它们尚未应用于临床常规。这是一个重要原因是缺乏模型可理解性。最近开发的用于导出CNN相关性图的可视化方法可能有助于填补这种差距。我们调查了具有更高准确性的模型还依赖于先前知识预定义的判别脑区域。方法:我们培训了CNN,用于检测痴呆症和Amnestic认知障碍(MCI)患者的N = 663 T1加权MRI扫描的AD,并通过交叉验证和三个独立样本验证模型的准确性= 1655例。我们评估了相关评分和海马体积的关联,以验证这种方法的临床效用。为了提高模型可理解性,我们实现了3D CNN相关性图的交互式可视化。结果:跨三个独立数据集,组分离表现出广告痴呆症与控制的高精度(AUC $ \ GEQUQ $ 0.92)和MCI与控制的中等精度(AUC $ \约0.75美元)。相关性图表明海马萎缩被认为是广告检测的最具信息性因素,其其他皮质和皮质区域中的萎缩额外贡献。海马内的相关评分与海马体积高度相关(Pearson的r $ \大约$ -0.86,p <0.001)。结论:相关性地图突出了我们假设先验的地区的萎缩。这加强了CNN模型的可理解性,这些模型基于扫描和诊断标签以纯粹的数据驱动方式培训。
translated by 谷歌翻译
简介白质超强度(WMHS)的自动分割是磁共振成像(MRI)神经影像分析的重要步骤。流体减弱的反转恢复(FLAIR加权)是MRI对比度,对于可视化和量化WMHS,这是脑小血管疾病和阿尔茨海默氏病(AD)特别有用的。临床MRI方案迁移到三维(3D)FLAIR加权的采集,以在所有三个体素维度中实现高空间分辨率。当前的研究详细介绍了深度学习工具的部署,以使自动化的WMH分割和表征从获得的3D Flair加权图像作为国家广告成像计划的一部分获得。 DDI研究中的642名参与者(283名男性,平均年龄:(65.18 +/- 9.33)年)中的材料和方法,在五个国家收集地点进行了培训和验证两个内部网络。在642名参与者的内部数据和一个外部数据集中,对三个模型进行了测试,其中包含来自国际合作者的29个情况。这些测试集进行了独立评估。使用了五个已建立的WMH性能指标与地面真理人体分割进行比较。测试的三个网络的结果,3D NNU-NET具有最佳性能,平均骰子相似性系数得分为0.78 +/- 0.10,其性能优于内部开发的2.5D模型和SOTA DEEP DEEP BAYESIAN网络。结论MRI协议中3D Flair加权图像的使用越来越多,我们的结果表明,WMH分割模型可以在3D数据上进行训练,并产生与无需更高的或更好的无需先进的WMH分割性能用于包括T1加权图像系列。
translated by 谷歌翻译
Late-life depression (LLD) is a highly prevalent mood disorder occurring in older adults and is frequently accompanied by cognitive impairment (CI). Studies have shown that LLD may increase the risk of Alzheimer's disease (AD). However, the heterogeneity of presentation of geriatric depression suggests that multiple biological mechanisms may underlie it. Current biological research on LLD progression incorporates machine learning that combines neuroimaging data with clinical observations. There are few studies on incident cognitive diagnostic outcomes in LLD based on structural MRI (sMRI). In this paper, we describe the development of a hybrid representation learning (HRL) framework for predicting cognitive diagnosis over 5 years based on T1-weighted sMRI data. Specifically, we first extract prediction-oriented MRI features via a deep neural network, and then integrate them with handcrafted MRI features via a Transformer encoder for cognitive diagnosis prediction. Two tasks are investigated in this work, including (1) identifying cognitively normal subjects with LLD and never-depressed older healthy subjects, and (2) identifying LLD subjects who developed CI (or even AD) and those who stayed cognitively normal over five years. To the best of our knowledge, this is among the first attempts to study the complex heterogeneous progression of LLD based on task-oriented and handcrafted MRI features. We validate the proposed HRL on 294 subjects with T1-weighted MRIs from two clinically harmonized studies. Experimental results suggest that the HRL outperforms several classical machine learning and state-of-the-art deep learning methods in LLD identification and prediction tasks.
translated by 谷歌翻译
Normative modelling is an emerging method for understanding the underlying heterogeneity within brain disorders like Alzheimer Disease (AD) by quantifying how each patient deviates from the expected normative pattern that has been learned from a healthy control distribution. Since AD is a multifactorial disease with more than one biological pathways, multimodal magnetic resonance imaging (MRI) neuroimaging data can provide complementary information about the disease heterogeneity. However, existing deep learning based normative models on multimodal MRI data use unimodal autoencoders with a single encoder and decoder that may fail to capture the relationship between brain measurements extracted from different MRI modalities. In this work, we propose multi-modal variational autoencoder (mmVAE) based normative modelling framework that can capture the joint distribution between different modalities to identify abnormal brain structural patterns in AD. Our multi-modal framework takes as input Freesurfer processed brain region volumes from T1-weighted (cortical and subcortical) and T2-weighed (hippocampal) scans of cognitively normal participants to learn the morphological characteristics of the healthy brain. The estimated normative model is then applied on Alzheimer Disease (AD) patients to quantify the deviation in brain volumes and identify the abnormal brain structural patterns due to the effect of the different AD stages. Our experimental results show that modeling joint distribution between the multiple MRI modalities generates deviation maps that are more sensitive to disease staging within AD, have a better correlation with patient cognition and result in higher number of brain regions with statistically significant deviations compared to a unimodal baseline model with all modalities concatenated as a single input.
translated by 谷歌翻译
阿尔茨海默氏病和额颞痴呆是两种主要痴呆症。它们的准确诊断和分化对于确定特定干预和治疗至关重要。然而,由于临床症状的类似模式,在疾病的早期,这两种痴呆症的鉴别诊断仍然很困难。因此,多种类型痴呆的自动分类具有重要的临床价值。到目前为止,尚未积极探索这一挑战。最近在医学图像领域进行深度学习的发展已经证明了各种分类任务的高性能。在本文中,我们建议利用两种类型的生物标志物:结构分级和结构萎缩。为此,我们首先建议训练大型3D U-NET的合奏,以局部区分健康与痴呆症解剖模式。这些模型的结果是一个可解释的3D分级图,能够指示异常的大脑区域。该地图也可以使用图形卷积神经网络在各种分类任务中被利用。最后,我们建议将深度分级和基于萎缩的分类结合起来,以改善痴呆型识别。与最先进的疾病检测任务和鉴别诊断任务相比,提出的框架表现出竞争性能。
translated by 谷歌翻译
阿尔茨海默氏病(AD)是痴呆症的最常见形式,由于痴呆症的多因素病因,通常难以诊断。关于基于神经成像的基于神经成像的深度神经网络(DNN)的著作表明,结构磁共振图像(SMRI)和氟脱氧葡萄糖正电子发射层析成像(FDG-PET)可提高健康对照和受试者的研究人群的精度。与广告。但是,这一结果与既定的临床知识冲突,即FDG-PET比SMRI更好地捕获AD特定的病理。因此,我们提出了一个框架,用于对基于FDG-PET和SMRI进行多模式DNN的系统评估,并重新评估单模式DNN和多模式DNN,用于二进制健康与AD,以及三向健康/轻度的健康/轻度认知障碍/广告分类。我们的实验表明,使用FDG-PET的单模式网络的性能优于MRI(准确性0.91 vs 0.87),并且在组合时不会显示出改进。这符合有关AD生物标志物的既定临床知识,但提出了有关多模式DNN的真正好处的问题。我们认为,未来关于多模式融合的工作应系统地评估我们提出的评估框架后的个人模式的贡献。最后,我们鼓励社区超越健康与AD分类,并专注于痴呆症的鉴别诊断,在这种诊断中,在这种诊断中,融合了多模式图像信息与临床需求相符。
translated by 谷歌翻译
主观认知下降(SCD)是阿尔茨海默氏病(AD)的临床前阶段,甚至在轻度认知障碍(MCI)之前就发生。渐进式SCD将转换为MCI,并有可能进一步发展为AD。因此,通过神经成像技术(例如,结构MRI)对进行性SCD的早期鉴定对于AD的早期干预具有巨大的临床价值。但是,现有的基于MRI的机器/深度学习方法通​​常会遇到小样本大小的问题,这对相关的神经影像学分析构成了巨大挑战。我们旨在解决本文的主要问题是如何利用相关领域(例如AD/NC)协助SCD的进展预测。同时,我们担心哪些大脑区域与进行性SCD的识别更加紧密相关。为此,我们提出了一个注意引导自动编码器模型,以进行有效的跨域适应,以促进知识转移从AD到SCD。所提出的模型由四个关键组成部分组成:1)用于学习不同域的共享子空间表示的功能编码模块,2)用于自动定义大脑中定义的兴趣障碍区域的注意模块,3)用于重构的解码模块原始输入,4)用于鉴定脑疾病的分类模块。通过对这四个模块的联合培训,可以学习域不变功能。同时,注意机制可以强调与脑部疾病相关的区域。公开可用的ADNI数据集和私人CLAS数据集的广泛实验证明了该方法的有效性。提出的模型直接可以在CPU上仅5-10秒进行训练和测试,并且适用于具有小数据集的医疗任务。
translated by 谷歌翻译
Over the years, Machine Learning models have been successfully employed on neuroimaging data for accurately predicting brain age. Deviations from the healthy brain aging pattern are associated to the accelerated brain aging and brain abnormalities. Hence, efficient and accurate diagnosis techniques are required for eliciting accurate brain age estimations. Several contributions have been reported in the past for this purpose, resorting to different data-driven modeling methods. Recently, deep neural networks (also referred to as deep learning) have become prevalent in manifold neuroimaging studies, including brain age estimation. In this review, we offer a comprehensive analysis of the literature related to the adoption of deep learning for brain age estimation with neuroimaging data. We detail and analyze different deep learning architectures used for this application, pausing at research works published to date quantitatively exploring their application. We also examine different brain age estimation frameworks, comparatively exposing their advantages and weaknesses. Finally, the review concludes with an outlook towards future directions that should be followed by prospective studies. The ultimate goal of this paper is to establish a common and informed reference for newcomers and experienced researchers willing to approach brain age estimation by using deep learning models
translated by 谷歌翻译
大脑磁共振成像(MRI)扫描的自动分割和体积对于诊断帕金森氏病(PD)和帕金森氏症综合症(P-Plus)至关重要。为了提高诊断性能,我们在大脑分割中采用了深度学习(DL)模型,并将其性能与金标准的非DL方法进行了比较。我们收集了健康对照组(n = 105)和PD患者(n = 105),多个全身性萎缩(n = 132)和渐进性超核麻痹(n = 69)的大脑MRI扫描。 2020.使用金标准的非DL模型FreeSurfer(FS),我们对六个脑结构进行了分割:中脑,PON,CAUDATE,CAUDATE,PUTATATE,pALLIDUM和THIRD CNTRICLE,并将其视为DL模型的注释数据,代表性V -net和unet。计算了分化正常,PD和P-Plus病例的曲线下的骰子分数和面积。每位患者六个大脑结构的V-NET和UNETR的分割时间分别为3.48 +-0.17和48.14 +-0.97 s,比FS(15,735 +-1.07 s)快至少300倍。两种DL模型的骰子得分都足够高(> 0.85),它们的疾病分类AUC优于FS。为了分类正常与P-Plus和PD与多个全身性萎缩(小脑型)的分类,DL模型和FS显示出高于0.8的AUC。 DL显着减少了分析时间,而不会损害大脑分割和差异诊断的性能。我们的发现可能有助于在临床环境中采用DL脑MRI分割并提高大脑研究。
translated by 谷歌翻译
早期发现阿尔茨海默氏病对于部署干预措施和减慢疾病进展至关重要。在过去的十年中,已经探索了许多机器学习和深度学习算法,目的是为阿尔茨海默氏症建立自动检测。数据增强技术和先进的深度学习体系结构的进步已经在该领域开辟了新的边界,研究正在快速发展。因此,这项调查的目的是概述有关阿尔茨海默氏病诊断深度学习模型的最新研究。除了对众多数据源,神经网络架构以及常用的评估措施进行分类外,我们还对实施和可重复性进行了分类。我们的目标是协助感兴趣的研究人员跟上最新的发展,并将早期的调查作为基准。此外,我们还指出了该主题的未来研究方向。
translated by 谷歌翻译
机器学习方法利用多参数生物标志物,特别是基于神经影像动物,具有改善痴呆早期诊断的巨大潜力,并预测哪些个体存在发展痴呆的风险。对于机器学习领域的基准算法和痴呆症中的神经影像症,并评估他们在临床实践中使用的潜力和临床试验,七年的大挑战已经在过去十年中组织:Miriad,Alzheimer的疾病大数据梦,Caddementia,机器学习挑战,MCI神经影像动物,蝌蚪和预测分析竞争。基于两个挑战评估框架,我们分析了这些大挑战如何互相补充研究问题,数据集,验证方法,结果和影响。七个大挑战解决了与(临床前)痴呆症(临床)痴呆症的筛查,诊断,预测和监测有关的问题。临床问题,任务和性能指标几乎没有重叠。然而,这具有提供对广泛问题的洞察力的优势,它也会限制对挑战的结果的验证。通常,获胜算法执行严格的数据预处理并组合了广泛的输入特征。尽管最先进的表演,但临床上没有挑战评估的大部分方法。为了增加影响,未来的挑战可以更加关注统计分析,对其与高于阿尔茨海默病的临床问题,以及使用超越阿尔茨海默病神经影像疾病的临床问题,以及超越阿尔茨海默病的临床问题。鉴于过去十年中汲取的潜力和经验教训,我们在未来十年及其超越的机器学习和神经影像中的大挑战前景兴奋。
translated by 谷歌翻译