对于适当的统计估计,数据集中的偏差可能非常有害。为了应对这个问题,已经开发了重要的加权方法,以将任何有偏分的分布与其相应的目标无偏分布相匹配。如今,开创性内核平均匹配(KMM)方法仍然被认为是该研究领域的最新技术。但是,该方法的主要缺点之一是大型数据集的计算负担。基于Huang等人的先前作品。 (2007)和De Mathelin等。 (2021),我们得出了一种新颖的重要性加权算法,该算法通过使用神经网络预测实例权重来扩展到大型数据集。我们在多个公共数据集上显示,在各种样本偏见下,我们提出的方法大大减少了大数据集上的计算时间,同时与其他重要的加权方法相比,保持了相似的样本偏差校正性能。所提出的方法似乎是唯一能够在合理时间内使用多达200万个数据的大型数据集进行相关重新加权的方法。
translated by 谷歌翻译
本文的目的是设计主动学习策略,从而在Lipschitz函数的假设下导致领域适应。以Mansour等人的先前作品为基础。(2009年)我们调整了源和目标分布之间的差异距离的概念,以将假设类别的最大化限制为在源域上执行准确标记的局部函数类别的最大化。我们根据Rademacher平均值和满足规律性条件的一般损失函数的局部差异来得出此类主动学习策略的概括误差界限。可以从理论界限推断出可以解决大数据集情况的实用k-媒体算法。我们的数值实验表明,在域适应性的背景下,所提出的算法与其他最先进的活跃学习技术具有竞争力,尤其是在大约十万张图像的大数据集上。
translated by 谷歌翻译
监督学习的关键假设是培训和测试数据遵循相同的概率分布。然而,这种基本假设在实践中并不总是满足,例如,由于不断变化的环境,样本选择偏差,隐私问题或高标签成本。转移学习(TL)放松这种假设,并允许我们在分销班次下学习。通常依赖于重要性加权的经典TL方法 - 基于根据重要性(即测试过度训练密度比率)的训练损失培训预测器。然而,由于现实世界机器学习任务变得越来越复杂,高维和动态,探讨了新的新方法,以应对这些挑战最近。在本文中,在介绍基于重要性加权的TL基础之后,我们根据关节和动态重要预测估计审查最近的进步。此外,我们介绍一种因果机制转移方法,该方法包含T1中的因果结构。最后,我们讨论了TL研究的未来观点。
translated by 谷歌翻译
Deep networks have been successfully applied to learn transferable features for adapting models from a source domain to a different target domain.In this paper, we present joint adaptation networks (JAN), which learn a transfer network by aligning the joint distributions of multiple domain-specific layers across domains based on a joint maximum mean discrepancy (JMMD) criterion. Adversarial training strategy is adopted to maximize JMMD such that the distributions of the source and target domains are made more distinguishable. Learning can be performed by stochastic gradient descent with the gradients computed by back-propagation in linear-time. Experiments testify that our model yields state of the art results on standard datasets.
translated by 谷歌翻译
所有著名的机器学习算法构成了受监督和半监督的学习工作,只有在一个共同的假设下:培训和测试数据遵循相同的分布。当分布变化时,大多数统计模型必须从新收集的数据中重建,对于某些应用程序,这些数据可能是昂贵或无法获得的。因此,有必要开发方法,以减少在相关领域中可用的数据并在相似领域中进一步使用这些数据,从而减少需求和努力获得新的标签样品。这引起了一个新的机器学习框架,称为转移学习:一种受人类在跨任务中推断知识以更有效学习的知识能力的学习环境。尽管有大量不同的转移学习方案,但本调查的主要目的是在特定的,可以说是最受欢迎的转移学习中最受欢迎的次级领域,概述最先进的理论结果,称为域适应。在此子场中,假定数据分布在整个培训和测试数据中发生变化,而学习任务保持不变。我们提供了与域适应性问题有关的现有结果的首次最新描述,该结果涵盖了基于不同统计学习框架的学习界限。
translated by 谷歌翻译
The ability to quickly and accurately identify covariate shift at test time is a critical and often overlooked component of safe machine learning systems deployed in high-risk domains. While methods exist for detecting when predictions should not be made on out-of-distribution test examples, identifying distributional level differences between training and test time can help determine when a model should be removed from the deployment setting and retrained. In this work, we define harmful covariate shift (HCS) as a change in distribution that may weaken the generalization of a predictive model. To detect HCS, we use the discordance between an ensemble of classifiers trained to agree on training data and disagree on test data. We derive a loss function for training this ensemble and show that the disagreement rate and entropy represent powerful discriminative statistics for HCS. Empirically, we demonstrate the ability of our method to detect harmful covariate shift with statistical certainty on a variety of high-dimensional datasets. Across numerous domains and modalities, we show state-of-the-art performance compared to existing methods, particularly when the number of observed test samples is small.
translated by 谷歌翻译
学习将模型分布与观察到的数据区分开来是统计和机器学习中的一个基本问题,而高维数据仍然是这些问题的挑战性环境。量化概率分布差异的指标(例如Stein差异)在高维度的统计测试中起重要作用。在本文中,我们考虑了一个希望区分未知概率分布和名义模型分布的数据的设置。虽然最近的研究表明,最佳$ l^2 $ regularized Stein评论家等于两个概率分布的分数函数的差异,最多是乘法常数,但我们研究了$ l^2 $正则化的作用,训练神经网络时差异评论家功能。由训练神经网络的神经切线内核理论的激励,我们开发了一种新的分期程序,用于训练时间的正则化重量。这利用了早期培训的优势,同时还可以延迟过度拟合。从理论上讲,我们将训练动态与大的正则重量与在早期培训时间的“懒惰训练”制度的内核回归优化相关联。在模拟的高维分布漂移数据和评估图像数据的生成模型的应用中,证明了分期$ l^2 $正则化的好处。
translated by 谷歌翻译
Recent studies reveal that a deep neural network can learn transferable features which generalize well to novel tasks for domain adaptation. However, as deep features eventually transition from general to specific along the network, the feature transferability drops significantly in higher layers with increasing domain discrepancy. Hence, it is important to formally reduce the dataset bias and enhance the transferability in task-specific layers. In this paper, we propose a new Deep Adaptation Network (DAN) architecture, which generalizes deep convolutional neural network to the domain adaptation scenario. In DAN, hidden representations of all task-specific layers are embedded in a reproducing kernel Hilbert space where the mean embeddings of different domain distributions can be explicitly matched. The domain discrepancy is further reduced using an optimal multi-kernel selection method for mean embedding matching. DAN can learn transferable features with statistical guarantees, and can scale linearly by unbiased estimate of kernel embedding. Extensive empirical evidence shows that the proposed architecture yields state-of-the-art image classification error rates on standard domain adaptation benchmarks.
translated by 谷歌翻译
大多数机器学习算法由一个或多个超参数配置,必须仔细选择并且通常会影响性能。为避免耗时和不可递销的手动试验和错误过程来查找性能良好的超参数配置,可以采用各种自动超参数优化(HPO)方法,例如,基于监督机器学习的重新采样误差估计。本文介绍了HPO后,本文审查了重要的HPO方法,如网格或随机搜索,进化算法,贝叶斯优化,超带和赛车。它给出了关于进行HPO的重要选择的实用建议,包括HPO算法本身,性能评估,如何将HPO与ML管道,运行时改进和并行化结合起来。这项工作伴随着附录,其中包含关于R和Python的特定软件包的信息,以及用于特定学习算法的信息和推荐的超参数搜索空间。我们还提供笔记本电脑,这些笔记本展示了这项工作的概念作为补充文件。
translated by 谷歌翻译
域适应性是现代机器学习中的一种流行范式,旨在解决培训或验证数据集之间具有用于学习和测试分类器(源域)和潜在的大型未标记数据集的培训或验证数据集之间的分歧问题,其中利用了模型(目标域)(目标域)(目标域) 。任务是找到源数据集的源和目标数据集的这种常见表示,其中源数据集提供了培训的信息,因此可以最大程度地减少来源和目标之间的差异。目前,最流行的领域适应性解决方案是基于训练神经网络,这些神经网络结合了分类和对抗性学习模块,这些模块是饥饿的,通常很难训练。我们提出了一种称为域适应性主成分分析(DAPCA)的方法,该方法发现线性减少的数据表示有助于解决域适应任务。 DAPCA基于数据点对之间引入正权重,并概括了主成分分析的监督扩展。 DAPCA代表一种迭代算法,因此在每次迭代中都解决了一个简单的二次优化问题。保证算法的收敛性,并且在实践中的迭代次数很少。我们验证了先前提出的用于解决域适应任务的基准的建议算法,还显示了在生物医学应用中对单细胞法数据集进行分析中使用DAPCA的好处。总体而言,考虑到源域和目标域之间可能的差异,DAPCA可以作为许多机器学习应用程序中有用的预处理步骤。
translated by 谷歌翻译
We introduce a new representation learning approach for domain adaptation, in which data at training and test time come from similar but different distributions. Our approach is directly inspired by the theory on domain adaptation suggesting that, for effective domain transfer to be achieved, predictions must be made based on features that cannot discriminate between the training (source) and test (target) domains.The approach implements this idea in the context of neural network architectures that are trained on labeled data from the source domain and unlabeled data from the target domain (no labeled target-domain data is necessary). As the training progresses, the approach promotes the emergence of features that are (i) discriminative for the main learning task on the source domain and (ii) indiscriminate with respect to the shift between the domains. We show that this adaptation behaviour can be achieved in almost any feed-forward model by augmenting it with few standard layers and a new gradient reversal layer. The resulting augmented architecture can be trained using standard backpropagation and stochastic gradient descent, and can thus be implemented with little effort using any of the deep learning packages.We demonstrate the success of our approach for two distinct classification problems (document sentiment analysis and image classification), where state-of-the-art domain adaptation performance on standard benchmarks is achieved. We also validate the approach for descriptor learning task in the context of person re-identification application.
translated by 谷歌翻译
特征表示的相似性在与域适应有关的问题的成功中起着枢转作用。特征相似性包括边际分布的不变性以及给定所需响应$ Y $(例如,类标签)的条件分布的闭合性。不幸的是,传统方法始终学习此类功能,而无需完全考虑到$ Y $以$ y $以$ y $考虑到信息,这又可能导致条件分布的不匹配或歧视结构的歧视结构的混合。在这项工作中,我们介绍了最近提出的冯Neumann有条件分歧,以提高多个域的可转移。我们表明,这种新的分歧是可差异的,并且有资格容易地量化功能与$ y $之间的功能依赖性。给定多个源任务时,我们将这种分歧整合到捕获$ y $,并且设计新颖的学习目标,假设这些源任务同时或顺序观察。在这两种情况下,我们在新任务的较小概括误差方面获得了对最先进的方法的有利性能,以及在源任务上丢失的灾难性遗忘的较少(在顺序设置中)。
translated by 谷歌翻译
最近,使用自动编码器(由使用神经网络建模的编码器,渠道和解码器组成)的通信系统的端到端学习问题最近被证明是一种有希望的方法。实际采用这种学习方法面临的挑战是,在变化的渠道条件(例如无线链接)下,它需要经常对自动编码器进行重新训练,以保持低解码错误率。由于重新培训既耗时又需要大量样本,因此当通道分布迅速变化时,它变得不切实际。我们建议使用不更改编码器和解码器网络的快速和样本(几射击)域的适应方法来解决此问题。不同于常规的训练时间无监督或半监督域的适应性,在这里,我们有一个训练有素的自动编码器,来自源分布,我们希望(在测试时间)使用仅使用一个小标记的数据集和无标记的数据来适应(测试时间)到目标分布。我们的方法着重于基于高斯混合物网络的通道模型,并根据类和组件条件仿射变换制定其适应性。学习的仿射转换用于设计解码器的最佳输入转换以补偿分布变化,并有效地呈现在接近源分布的解码器输入中。在实际MMWAVE FPGA设置以及无线设置共有的许多模拟分布变化上,使用非常少量的目标域样本来证明我们方法在适应时的有效性。
translated by 谷歌翻译
Domain adaptation aims at generalizing a high-performance learner on a target domain via utilizing the knowledge distilled from a source domain which has a different but related data distribution. One solution to domain adaptation is to learn domain invariant feature representations while the learned representations should also be discriminative in prediction. To learn such representations, domain adaptation frameworks usually include a domain invariant representation learning approach to measure and reduce the domain discrepancy, as well as a discriminator for classification. Inspired by Wasserstein GAN, in this paper we propose a novel approach to learn domain invariant feature representations, namely Wasserstein Distance Guided Representation Learning (WD-GRL). WDGRL utilizes a neural network, denoted by the domain critic, to estimate empirical Wasserstein distance between the source and target samples and optimizes the feature extractor network to minimize the estimated Wasserstein distance in an adversarial manner. The theoretical advantages of Wasserstein distance for domain adaptation lie in its gradient property and promising generalization bound. Empirical studies on common sentiment and image classification adaptation datasets demonstrate that our proposed WDGRL outperforms the state-of-the-art domain invariant representation learning approaches.
translated by 谷歌翻译
未经监督的域适应(UDA)用于重新识别(RE-ID)是一个具有挑战性的任务:避免昂贵的附加数据的注释,它旨在将知识从域转移到仅具有未标记数据的域的带注释数据。已证明伪标签方法已对UDA重新ID有效。然而,这些方法的有效性大量取决于通过聚类影响影响伪标签的一些超参数(HP)的选择。兴趣领域缺乏注释使得这一选择是非微不足道的。目前的方法只需重复使用所有适应任务的相同的经验值,并且无论通过伪标记培训阶段都会改变的目标数据表示。由于这种简单的选择可能会限制其性能,我们的目标是解决这个问题。我们提出了对聚类UDA RE-ID进行培训选择的新理论基础以及伪标签UDA聚类的自动和循环HP调谐方法:丘比巴。 Hyprass在伪标记方法中包含两个模块:(i)基于标记源验证集的HP选择和(ii)特征歧视的条件域对齐,以改善基于源样本的HP选择。关于常用的人员重新ID和车辆重新ID数据集的实验表明,与常用的经验HP设置相比,我们所提出的次数始终如一地提高RE-ID中最先进的方法。
translated by 谷歌翻译
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. Due to the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Unlike previous surveys, this survey paper reviews more than forty representative transfer learning approaches, especially homogeneous transfer learning approaches, from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, over twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
translated by 谷歌翻译
开放型域适应(OSDA)假设目标域包含未知类,这些类未在源域中发现。现有的域对抗学习方法不适合OSDA,因为与\ textit {Unknown}类匹配的分布会导致负转移。以前的OSDA方法仅通过使用\ textit {已知}类而着重于匹配源和目标分布。但是,此\ textit {已知} - 仅匹配可能无法学习目标 - \ textit {unknown}特征空间。因此,我们提出了不知名的域对抗学习(uadal),\ textit {aligns} source and targe- \ textit {已知{已知{已知{已知{已知{功能对齐过程。我们提供了有关提出的\ textIt {unknown-ware}特征对齐的优化状态的理论分析,因此我们可以保证\ textit {Alignment}和\ textit {segregation}理论上。从经验上讲,我们在基准数据集上评估了Uadal,该数据集表明Uadal通过报告最先进的性能来优于其他具有更好特征对齐方式的方法。
translated by 谷歌翻译
我们考虑了主动域适应(ADA)对未标记的目标数据的问题,其中哪个子集被主动选择并给定预算限制标记。受到对域适应性源和目标之间的标签分布不匹配的关键问题的最新分析的启发,我们设计了一种方法,该方法在ADA中首次解决该问题。它的核心是一种新颖的抽样策略,该策略寻求目标数据,以最能近似整个目标分布以及代表性,多样化和不确定。然后,采样目标数据不仅用于监督学习,还用于匹配源和目标域的标签分布,从而导致了显着的性能改善。在四个公共基准测试中,我们的方法在每个适应方案中都大大优于现有方法。
translated by 谷歌翻译
分销转移(DS)是一个常见的问题,可恶化学习机器的性能。为了克服这个问题,我们假设现实世界的分布是由基本分布组成的,这些分布在不同域之间保持不变。我们将其称为不变的基本分布(即)假设。因此,这种不变性使知识转移到看不见的域。为了利用该假设在域概括(DG)中,我们开发了一个由门域单位(GDU)组成的模块化神经网络层。每个GDU都学会了单个基本领域的嵌入,使我们能够在训练过程中编码域相似性。在推断期间,GDU在观察和每个相应的基本分布之间进行了计算相似性,然后将其用于形成学习机的加权集合。由于我们的层是经过反向传播的训练,因此可以轻松地集成到现有的深度学习框架中。我们对Digits5,ECG,CamelyOn17,IwildCam和FMOW的评估显示出对训练的目标域的性能有显着改善,而无需从目标域访问数据。这一发现支持了即现实世界数据分布中的假设。
translated by 谷歌翻译
在图像分类中,获得足够的标签通常昂贵且耗时。为了解决这个问题,域适应通常提供有吸引力的选择,给出了来自类似性质但不同域的大量标记数据。现有方法主要对准单个结构提取的表示的分布,并且表示可以仅包含部分信息,例如,仅包含部分饱和度,亮度和色调信息。在这一行中,我们提出了多代表性适应,这可以大大提高跨域图像分类的分类精度,并且特别旨在对准由名为Inception Adaption Adationation模块(IAM)提取的多个表示的分布。基于此,我们呈现多色自适应网络(MRAN)来通过多表示对准完成跨域图像分类任务,该任向性可以捕获来自不同方面的信息。此外,我们扩展了最大的平均差异(MMD)来计算适应损耗。我们的方法可以通过扩展具有IAM的大多数前进模型来轻松实现,并且网络可以通过反向传播有效地培训。在三个基准图像数据集上进行的实验证明了备的有效性。代码已在https://github.com/easezyc/deep-transfer -learning上获得。
translated by 谷歌翻译