Algorithm fairness has started to attract the attention of researchers in AI, Software Engineering and Law communities, with more than twenty different notions of fairness proposed in the last few years. Yet, there is no clear agreement on which definition to apply in each situation. Moreover, the detailed differences between multiple definitions are difficult to grasp. To address this issue, this paper collects the most prominent definitions of fairness for the algorithmic classification problem, explains the rationale behind these definitions, and demonstrates each of them on a single unifying case-study. Our analysis intuitively explains why the same case can be considered fair according to some definitions and unfair according to others.
translated by 谷歌翻译
公平性是确保机器学习(ML)预测系统不会歧视特定个人或整个子人群(尤其是少数族裔)的重要要求。鉴于观察公平概念的固有主观性,文献中已经引入了几种公平概念。本文是一项调查,说明了通过大量示例和场景之间的公平概念之间的微妙之处。此外,与文献中的其他调查不同,它解决了以下问题:哪种公平概念最适合给定的现实世界情景,为什么?我们试图回答这个问题的尝试包括(1)确定手头现实世界情景的一组与公平相关的特征,(2)分析每个公平概念的行为,然后(3)适合这两个元素以推荐每个特定设置中最合适的公平概念。结果总结在决策图中可以由从业者和政策制定者使用,以导航相对较大的ML目录。
translated by 谷歌翻译
近年来,解决机器学习公平性(ML)和自动决策的问题引起了处理人工智能的科学社区的大量关注。已经提出了ML中的公平定义的一种不同的定义,认为不同概念是影响人口中个人的“公平决定”的不同概念。这些概念之间的精确差异,含义和“正交性”尚未在文献中完全分析。在这项工作中,我们试图在这个解释中汲取一些订单。
translated by 谷歌翻译
解决公平问题对于安全使用机器学习算法来支持对人们的生活产生关键影响的决策,例如雇用工作,儿童虐待,疾病诊断,贷款授予等。过去十年,例如统计奇偶校验和均衡的赔率。然而,最新的公平概念是基于因果关系的,反映了现在广泛接受的想法,即使用因果关系对于适当解决公平问题是必要的。本文研究了基于因果关系的公平概念的详尽清单,并研究了其在现实情况下的适用性。由于大多数基于因果关系的公平概念都是根据不可观察的数量(例如干预措施和反事实)来定义的,因此它们在实践中的部署需要使用观察数据来计算或估计这些数量。本文提供了有关从观察数据(包括可识别性(Pearl的SCM框架))和估计(潜在结果框架)中推断出因果量的不同方法的全面报告。该调查论文的主要贡献是(1)指南,旨在在特定的现实情况下帮助选择合适的公平概念,以及(2)根据Pearl的因果关系阶梯的公平概念的排名,表明它很难部署。实践中的每个概念。
translated by 谷歌翻译
由于决策越来越依赖机器学习和(大)数据,数据驱动AI系统的公平问题正在接受研究和行业的增加。已经提出了各种公平知识的机器学习解决方案,该解决方案提出了数据,学习算法和/或模型输出中的公平相关的干预措施。然而,提出新方法的重要组成部分正在经验上对其进行验证在代表现实和不同的设置的基准数据集上。因此,在本文中,我们概述了用于公平知识机器学习的真实数据集。我们专注于表格数据作为公平感知机器学习的最常见的数据表示。我们通过识别不同属性之间的关系,特别是w.r.t.来开始分析。受保护的属性和类属性,使用贝叶斯网络。为了更深入地了解数据集中的偏见和公平性,我们调查使用探索性分析的有趣关系。
translated by 谷歌翻译
自几十年前以来,已经证明了机器学习评估贷款申请人信誉的实用性。但是,自动决策可能会导致对群体或个人的不同治疗方法,可能导致歧视。本文基准了12种最大的偏见缓解方法,讨论其绩效,该绩效基于5个不同的公平指标,获得的准确性以及为金融机构提供的潜在利润。我们的发现表明,在确保准确性和利润的同时,实现公平性方面的困难。此外,它突出了一些表现最好和最差的人,并有助于弥合实验机学习及其工业应用之间的差距。
translated by 谷歌翻译
分类,一种重大研究的数据驱动机器学习任务,驱动越来越多的预测系统,涉及批准的人类决策,如贷款批准和犯罪风险评估。然而,分类器经常展示歧视性行为,特别是当呈现有偏置数据时。因此,分类公平已经成为一个高优先级的研究区。数据管理研究显示与数据和算法公平有关的主题的增加和兴趣,包括公平分类的主题。公平分类的跨学科努力,具有最大存在的机器学习研究,导致大量的公平概念和尚未系统地评估和比较的广泛方法。在本文中,我们对13个公平分类方法和额外变种的广泛分析,超越,公平,公平,效率,可扩展性,对数据误差的鲁棒性,对潜在的ML模型,数据效率和使用各种指标的稳定性的敏感性和稳定性现实世界数据集。我们的分析突出了对不同指标的影响的新颖见解和高级方法特征对不同方面的性能方面。我们还讨论了选择适合不同实际设置的方法的一般原则,并确定以数据管理为中心的解决方案可能产生最大影响的区域。
translated by 谷歌翻译
预测学生的学习成绩是教育数据挖掘(EDM)的关键任务之一。传统上,这种模型的高预测质量被认为至关重要。最近,公平和歧视W.R.T.受保护的属性(例如性别或种族)引起了人们的关注。尽管EDM中有几种公平感知的学习方法,但对这些措施的比较评估仍然缺失。在本文中,我们评估了各种教育数据集和公平感知学习模型上学生绩效预测问题的不同群体公平措施。我们的研究表明,公平度量的选择很重要,对于选择等级阈值的选择同样。
translated by 谷歌翻译
What does it mean for an algorithm to be biased? In U.S. law, unintentional bias is encoded via disparate impact, which occurs when a selection process has widely different outcomes for different groups, even as it appears to be neutral. This legal determination hinges on a definition of a protected class (ethnicity, gender) and an explicit description of the process.When computers are involved, determining disparate impact (and hence bias) is harder. It might not be possible to disclose the process. In addition, even if the process is open, it might be hard to elucidate in a legal setting how the algorithm makes its decisions. Instead of requiring access to the process, we propose making inferences based on the data it uses.We present four contributions. First, we link disparate impact to a measure of classification accuracy that while known, has received relatively little attention. Second, we propose a test for disparate impact based on how well the protected class can be predicted from the other attributes. Third, we describe methods by which data might be made unbiased. Finally, we present empirical evidence supporting the effectiveness of our test for disparate impact and our approach for both masking bias and preserving relevant information in the data. Interestingly, our approach resembles some actual selection practices that have recently received legal scrutiny.
translated by 谷歌翻译
在许多机器学习应用中已经显示了歧视,该应用程序要求在与道德相关的领域(例如面部识别,医学诊断和刑事判决)中部署之前进行足够的公平测试。现有的公平测试方法主要设计用于识别个人歧视,即对个人的歧视。然而,作为另一种广泛的歧视类型,对群体歧视(大多数隐藏)的测试却少得多。为了解决差距,在这项工作中,我们提出了测试,一种可解释的测试方法,它系统地识别和措施隐藏了一个神经网络的隐藏(我们称为“微妙”群体歧视},该神经网络的特征是敏感特征的条件。一个神经网络,TestsgDFirst自动生成可解释的规则集,该规则集将输入空间分为两组,以暴露模型的组歧视。鉴于,Testsgdalso提供了基于对输入空间进行采样的估计组公平得分,以衡量确定的SIXTEL组歧视程度,这可以确保准确地达到错误的限制。我们评估了在包括结构化数据和文本数据在内的流行数据集中训练的测试多个神经网络模型。实验结果表明,测试有效地有效地识别和测量了如此微妙的群体歧视,以至于该测试效率以前从未透露过。矿石,我们表明,测试的测试结果指南生成新样品的测试结果,以通过可忽略不计的准确性下降来减轻这种歧视。
translated by 谷歌翻译
决策的公平在我们社会中是一个长期存在的问题。尽管在机器学习模式中对不公平缓解的研究活动越来越多,但几乎没有研究侧重于减轻人类决策的不公平。人类决策的公平性是重要的,如果没有机器学习模型的公平,因为人类使人类做出最终决定和机器学习模型可以继承自培训的人类决策的过程。因此,这项工作旨在检测人类决策的不公平,这是解决不公平的人为决策问题的第一步。本文建议利用现有的机器学习公平检测机制来检测人类决策的不公平。这背后的理由是,虽然难以直接测试人类是否会使人类不公平决策,但目前对机器学习公平的研究,现在易于测试,以低成本的大规模,是否是机器学习模型不公平。通过在四个一般机器学习公平数据集和一个图像处理数据集中综合不公平标签,本文表明,该方法能够检测(1)培训数据中是否存在不公平标签和(2)的程度和方向不公平。我们认为,这项工作展示了利用机器学习公平来检测人类决策公平性的潜力。在这项工作之后,可以在(1)上进行研究(1)预防未来的不公平决定,(2)修复先前不公平的决定,以及(3)培训更公平的机器学习模型。
translated by 谷歌翻译
在高风险领域(人们的生计受到影响)中,机器学习的日益增长的使用迫切需要解释和公平的算法。在这些设置中,此类算法的准确性也至关重要。考虑到这些需求,我们提出了一个混合整数优化(MIO)框架,用于学习具有固定深度的最佳分类树,可以通过任意域特定的公平约束来方便地增强。我们基于在流行数据集上建造公平树木的最先进方法基准测试;鉴于固定的歧视阈值,我们的方法平均将样本外(OOS)的精度提高了2.3个百分点,并在88.9%的实验上获得了更高的OOS精度。我们还将各种算法公平概念纳入我们的方法中,展示其多功能建模能力,使决策者可以微调准确性和公平性之间的权衡。
translated by 谷歌翻译
本文旨在改善多敏感属性的机器学习公平。自机学习软件越来越多地用于高赌注和高风险决策,机器学习公平吸引了越来越多的关注。大多数现有的机器学习公平解决方案一次只针对一个敏感的属性(例如性别),或者具有魔法参数来调整,或者具有昂贵的计算开销。为了克服这些挑战,我们在培训机器学习模型之前,我们建议平衡每种敏感属性的培训数据分布。我们的研究结果表明,在低计算开销的情况下,在低计算开销的情况下,Fairbalancy可以在每一个已知的敏感属性上显着减少公平度量(AOD,EOD和SPD),如果对预测性能有任何损坏,则可以在没有多大的情况下进行任何已知的敏感属性。此外,FairbalanceClass是非游价的变种,可以平衡培训数据中的班级分布。通过FairbalanceClass,预测将不再支持多数阶级,从而在少数阶级获得更高的F $ _1 $得分。 Fairbalance和FairbalanceClass还以预测性能和公平度量而言,在其他最先进的偏置缓解算法中也优于其他最先进的偏置缓解算法。本研究将通过提供一种简单但有效的方法来利用社会来改善具有多个敏感属性数据的机器学习软件的公平性。我们的结果还验证了在具有无偏见的地面真理标签上的数据集上的假设,学习模型中的道德偏置在很大程度上属于每个组内具有(2)类分布中的组大小和(2)差异的训练数据。
translated by 谷歌翻译
鉴于神经网络有区别,公平性改善的问题是系统地减少歧视,而不会显着削弱其性能(即准确性)。已经提出了针对神经网络的多种公平改进方法,包括预处理,处理和后处理。然而,我们的实证研究表明,这些方法并不总是有效的(例如,它们可以通过支付巨大准确性下降的价格来提高公平性),甚至没有帮助(例如,它们甚至可能使公平性和准确性都恶化)。在这项工作中,我们提出了一种基于因果分析的公平性改进方法的方法。也就是说,我们根据如何在输入属性和隐藏的神经元之间分布的神经元和属性如何选择方法。我们的实验评估表明,我们的方法是有效的(即,始终确定最佳的公平改善方法)和有效的效率(即,平均时间开销为5分钟)。
translated by 谷歌翻译
Machine learning can impact people with legal or ethical consequences when it is used to automate decisions in areas such as insurance, lending, hiring, and predictive policing. In many of these scenarios, previous decisions have been made that are unfairly biased against certain subpopulations, for example those of a particular race, gender, or sexual orientation. Since this past data may be biased, machine learning predictors must account for this to avoid perpetuating or creating discriminatory practices. In this paper, we develop a framework for modeling fairness using tools from causal inference. Our definition of counterfactual fairness captures the intuition that a decision is fair towards an individual if it is the same in (a) the actual world and (b) a counterfactual world where the individual belonged to a different demographic group. We demonstrate our framework on a real-world problem of fair prediction of success in law school. * Equal contribution. This work was done while JL was a Research Fellow at the Alan Turing Institute. 2 https://obamawhitehouse.archives.gov/blog/2016/05/04/big-risks-big-opportunities-intersection-big-dataand-civil-rights 31st Conference on Neural Information Processing Systems (NIPS 2017),
translated by 谷歌翻译
We study critical systems that allocate scarce resources to satisfy basic needs, such as homeless services that provide housing. These systems often support communities disproportionately affected by systemic racial, gender, or other injustices, so it is crucial to design these systems with fairness considerations in mind. To address this problem, we propose a framework for evaluating fairness in contextual resource allocation systems that is inspired by fairness metrics in machine learning. This framework can be applied to evaluate the fairness properties of a historical policy, as well as to impose constraints in the design of new (counterfactual) allocation policies. Our work culminates with a set of incompatibility results that investigate the interplay between the different fairness metrics we propose. Notably, we demonstrate that: 1) fairness in allocation and fairness in outcomes are usually incompatible; 2) policies that prioritize based on a vulnerability score will usually result in unequal outcomes across groups, even if the score is perfectly calibrated; 3) policies using contextual information beyond what is needed to characterize baseline risk and treatment effects can be fairer in their outcomes than those using just baseline risk and treatment effects; and 4) policies using group status in addition to baseline risk and treatment effects are as fair as possible given all available information. Our framework can help guide the discussion among stakeholders in deciding which fairness metrics to impose when allocating scarce resources.
translated by 谷歌翻译
机器学习(ML)在渲染影响社会各个群体的决策中起着越来越重要的作用。 ML模型为刑事司法的决定,银行业中的信贷延长以及公司的招聘做法提供了信息。这提出了模型公平性的要求,这表明自动化的决策对于受保护特征(例如,性别,种族或年龄)通常是公平的,这些特征通常在数据中代表性不足。我们假设这个代表性不足的问题是数据学习不平衡问题的必然性。此类不平衡通常反映在两个类别和受保护的功能中。例如,一个班级(那些获得信用的班级)对于另一个班级(未获得信用的人)可能会过分代表,而特定组(女性)(女性)的代表性可能与另一组(男性)有关。相对于受保护组的算法公平性的关键要素是同时减少了基础培训数据中的类和受保护的群体失衡,这促进了模型准确性和公平性的提高。我们通过展示这些领域中的关键概念如何重叠和相互补充,讨论弥合失衡学习和群体公平的重要性;并提出了一种新颖的过采样算法,即公平的过采样,该算法既解决偏斜的类别分布和受保护的特征。我们的方法:(i)可以用作标准ML算法的有效预处理算法,以共同解决不平衡和群体权益; (ii)可以与公平感知的学习算法结合使用,以提高其对不同水平不平衡水平的稳健性。此外,我们迈出了一步,将公平和不平衡学习之间的差距与新的公平实用程序之间的差距弥合,从而将平衡的准确性与公平性结合在一起。
translated by 谷歌翻译
近年来,机器学习算法在多种高风险决策应用程序中变得无处不在。机器学习算法从数据中学习模式的无与伦比的能力也使它们能够融合嵌入的偏差。然后,一个有偏见的模型可以做出不成比例地损害社会中某些群体的决策 - 例如,他们获得金融服务的机会。对这个问题的认识引起了公平ML领域,该领域的重点是研究,衡量和缓解算法预测的不公平性,相对于一组受保护的群体(例如种族或性别)。但是,算法不公平的根本原因仍然难以捉摸,研究人员在指责ML算法或训练的数据之间进行了划分。在这项工作中,我们坚持认为,算法不公平源于数据中模型与偏见之间的相互作用,而不是源于其中任何一个的孤立贡献。为此,我们提出了一种分类法来表征数据偏差,并研究了一系列关于公平盲目的ML算法在不同数据偏见设置下表现出的公平性准确性权衡的假设。在我们的现实帐户开放欺诈用例中,我们发现每个设置都需要特定的权衡,从而影响了预期价值和差异的公平性 - 后者通常没有注意到。此外,我们展示了算法在准确性和公平性方面如何根据影响数据的偏差进行比较。最后,我们注意到,在特定的数据偏见条件下,简单的预处理干预措施可以成功平衡小组错误率,而在更复杂的设置中相同的技术失败。
translated by 谷歌翻译
尽管机器学习和基于排名的系统在广泛用于敏感决策过程(例如,确定职位候选者,分配信用评分)时,他们对成果的意外偏见充满了疑虑,这使算法公平(例如,人口统计学公平)平等,机会平等)的目标。 “算法追索”提供了可行的恢复动作,通过修改属性来改变不良结果。我们介绍了排名级别的追索权公平的概念,并开发了一个“追索意识的排名”解决方案,该解决方案满足了排名的追索公平约束,同时最大程度地减少了建议的修改成本。我们的解决方案建议干预措施可以重新排序数据库记录的排名列表并减轻组级别的不公平性;具体而言,子组的不成比例表示和追索权成本不平衡。此重新排列可确定对数据点的最小修改,这些属性修改根据其易于解决方案进行了加权。然后,我们提出了一个有效的基于块的扩展,该扩展可以在任何粒度上重新排序(例如,银行贷款利率的多个括号,搜索引擎结果的多页)。对真实数据集的评估表明,尽管现有方法甚至可能加剧诉求不公平,但我们的解决方案 - raguel-可以显着改善追索性的公平性。 Raguel通过反事实生成和重新排列的结合过程优于改善追索性公平的替代方案,同时对大型数据集保持了有效的效率。
translated by 谷歌翻译
本文总结并评估了追求人工智能(AI)系统公平性的各种方法,方法和技术。它检查了这些措施的优点和缺点,并提出了定义,测量和防止AI偏见的实际准则。特别是,它警告了一些简单而常见的方法来评估AI系统中的偏见,并提供更复杂和有效的替代方法。该论文还通过在高影响力AI系统的不同利益相关者之间提供通用语言来解决该领域的广泛争议和困惑。它描述了涉及AI公平的各种权衡,并提供了平衡它们的实用建议。它提供了评估公平目标成本和收益的技术,并定义了人类判断在设定这些目标中的作用。本文为AI从业者,组织领导者和政策制定者提供了讨论和指南,以及针对更多技术受众的其他材料的各种链接。提供了许多现实世界的例子,以从实际角度阐明概念,挑战和建议。
translated by 谷歌翻译