通用近似定理断言,单个隐藏层神经网络在紧凑型集合上具有任何所需的精度,可以近似连续函数。作为存在的结果,通用近似定理支持在各种应用程序中使用神经网络,包括回归和分类任务。通用近似定理不仅限于实现的神经网络,而且还具有复杂,季节,Tessarines和Clifford值的神经网络。本文扩展了广泛的超复杂性神经网络的通用近似定理。确切地说,我们首先介绍非分类超复杂代数的概念。复数,偶数和苔丝是非分类超复合代数的示例。然后,我们陈述了在非分类代数上定义的超复合值的神经网络的通用近似定理。
translated by 谷歌翻译
其中的许多神经网络能够复制复杂的任务或功能的原因之一是其普遍性财产。在过去的几十年里已经在提供单一或类神经网络的构造性证明见过很多尝试。本文是为了提供一大类,包括激活现有的大多数激活和超越的普遍性统一的和建设性的框架。在框架的心脏是神经网络近似标识的概念。事实证明,大多数现有的激活是神经网络近似的标志,因此在连续的函数对致密的空间普遍。该框架诱导几个优点。首先,它是建设性与功能分析,概率论,和数值分析的基本手段。其次,它是第一个统一的尝试,其有效期为大多数现有的激活。第三,作为一个以产品,该框架提供了一些现有的激活功能,包括米什司炉ELU,格鲁,等四的第一所大学证明,它发现带有普遍性的保证财产新的激活。事实上,任何活化\ textemdash其$ \ķ$阶导数,以$ \ķ$为整数,是积并且基本上界定\ textemdash是普遍的。第五,对于给定的激活和容错,框架精确地提供了具有预定数量的神经元,和重量/偏差的值中对应的一个隐藏神经网络的体系结构。
translated by 谷歌翻译
标准人工神经网络(ANNS)使用无内存非线性激活的总和产生或多功能节点操作。这些神经网络已知具有通用功能近似功能。先前提出的形态学感知器使用Max-sum,代替总产量,节点处理,并具有有希望的电路实现属性。在本文中,我们表明这些Max-SUM ANN没有通用近似功能。此外,我们考虑了形态学上的签名签名的最大和最大 - 明星和最大 - 星级概括,并表明这些变体也没有通用的近似能力。我们将这些变化与对数数字系统(LNS)的实现进行对比,这些变化也避免了乘法,但确实具有通用的近似功能。
translated by 谷歌翻译
受生物神经元的启发,激活功能在许多现实世界中常用的任何人工神经网络的学习过程中起着重要作用。文献中已经提出了各种激活功能,用于分类和回归任务。在这项工作中,我们调查了过去已经使用的激活功能以及当前的最新功能。特别是,我们介绍了多年来激活功能的各种发展以及这些激活功能的优势以及缺点或局限性。我们还讨论了经典(固定)激活功能,包括整流器单元和自适应激活功能。除了基于表征的激活函数的分类法外,还提出了基于应用的激活函数的分类法。为此,对MNIST,CIFAR-10和CIFAR-100等分类数据集进行了各种固定和自适应激活函数的系统比较。近年来,已经出现了一个具有物理信息的机器学习框架,以解决与科学计算有关的问题。为此,我们还讨论了在物理知识的机器学习框架中使用的激活功能的各种要求。此外,使用Tensorflow,Pytorch和Jax等各种机器学习库之间进行了不同的固定和自适应激活函数进行各种比较。
translated by 谷歌翻译
本文通过引入几何深度学习(GDL)框架来构建通用馈电型型模型与可区分的流形几何形状兼容的通用馈电型模型,从而解决了对非欧国人数据进行处理的需求。我们表明,我们的GDL模型可以在受控最大直径的紧凑型组上均匀地近似任何连续目标函数。我们在近似GDL模型的深度上获得了最大直径和上限的曲率依赖性下限。相反,我们发现任何两个非分类紧凑型歧管之间始终都有连续的函数,任何“局部定义”的GDL模型都不能均匀地近似。我们的最后一个主要结果确定了数据依赖性条件,确保实施我们近似的GDL模型破坏了“维度的诅咒”。我们发现,任何“现实世界”(即有限)数据集始终满足我们的状况,相反,如果目标函数平滑,则任何数据集都满足我们的要求。作为应用,我们确认了以下GDL模型的通用近似功能:Ganea等。 (2018)的双波利馈电网络,实施Krishnan等人的体系结构。 (2015年)的深卡尔曼 - 滤波器和深度玛克斯分类器。我们构建了:Meyer等人的SPD-Matrix回归剂的通用扩展/变体。 (2011)和Fletcher(2003)的Procrustean回归剂。在欧几里得的环境中,我们的结果暗示了Kidger和Lyons(2020)的近似定理和Yarotsky和Zhevnerchuk(2019)无估计近似率的数据依赖性版本的定量版本。
translated by 谷歌翻译
具有整流线性单元(Relu)非线性的神经网络由参数$ \ Theta $的矢量描述,并实现为分段线性连续函数$ r _ {\ theta}:x \ in \ mathbb r ^ {d} \ mapsto r _ {\ theta}(x)\ in \ mathbb r ^ {k} $。自然缩放和排列在参数$ \ theta $留下的实现不变,导致相同的参数类,产生相同的实现。这些考虑因而导致可识别性的概念 - 从其实现$ r _ {\} $的唯一知识中恢复(等价类别)$ \ theta $的能力。本文的总体目标是介绍任何深度的Relu神经网络,$ \ Phi(\ Theta)$的嵌入,即不变于缩放,并且提供网络实现的本地线性参数化。利用这两个关键属性,我们得出了一些条件,在这种情况下,深度relu网络确实可以从有限一组样本的实现的知识局部地识别$ x_ {i} \ in \ mathbb r ^ {d} $。我们在更深入的深度上研究了浅层案例,为网络建立了必要的和充分条件,从界限子集$ \ Mathcal X \ subseteq \ MathBB r ^ {d} $识别。
translated by 谷歌翻译
This short report reviews the current state of the research and methodology on theoretical and practical aspects of Artificial Neural Networks (ANN). It was prepared to gather state-of-the-art knowledge needed to construct complex, hypercomplex and fuzzy neural networks. The report reflects the individual interests of the authors and, by now means, cannot be treated as a comprehensive review of the ANN discipline. Considering the fast development of this field, it is currently impossible to do a detailed review of a considerable number of pages. The report is an outcome of the Project 'The Strategic Research Partnership for the mathematical aspects of complex, hypercomplex and fuzzy neural networks' meeting at the University of Warmia and Mazury in Olsztyn, Poland, organized in September 2022.
translated by 谷歌翻译
这项调查的目的是介绍对深神经网络的近似特性的解释性回顾。具体而言,我们旨在了解深神经网络如何以及为什么要优于其他经典线性和非线性近似方法。这项调查包括三章。在第1章中,我们回顾了深层网络及其组成非线性结构的关键思想和概念。我们通过在解决回归和分类问题时将其作为优化问题来形式化神经网络问题。我们简要讨论用于解决优化问题的随机梯度下降算法以及用于解决优化问题的后传播公式,并解决了与神经网络性能相关的一些问题,包括选择激活功能,成本功能,过度适应问题和正则化。在第2章中,我们将重点转移到神经网络的近似理论上。我们首先介绍多项式近似中的密度概念,尤其是研究实现连续函数的Stone-WeierStrass定理。然后,在线性近似的框架内,我们回顾了馈电网络的密度和收敛速率的一些经典结果,然后在近似Sobolev函数中进行有关深网络复杂性的最新发展。在第3章中,利用非线性近似理论,我们进一步详细介绍了深度和近似网络与其他经典非线性近似方法相比的近似优势。
translated by 谷歌翻译
We show that deep sparse ReLU networks with ternary weights and deep ReLU networks with binary weights can approximate β-Hölder functions on [0, 1] d . Also, for any interval [a, b) ⊂ R, continuous functions on [0, 1] d can be approximated by networks of depth 2 with binary activation function 1 [a,b) .
translated by 谷歌翻译
This paper investigates the approximation properties of deep neural networks with piecewise-polynomial activation functions. We derive the required depth, width, and sparsity of a deep neural network to approximate any H\"{o}lder smooth function up to a given approximation error in H\"{o}lder norms in such a way that all weights of this neural network are bounded by $1$. The latter feature is essential to control generalization errors in many statistical and machine learning applications.
translated by 谷歌翻译
We generalize the classical universal approximation theorem for neural networks to the case of complex-valued neural networks. Precisely, we consider feedforward networks with a complex activation function $\sigma : \mathbb{C} \to \mathbb{C}$ in which each neuron performs the operation $\mathbb{C}^N \to \mathbb{C}, z \mapsto \sigma(b + w^T z)$ with weights $w \in \mathbb{C}^N$ and a bias $b \in \mathbb{C}$, and with $\sigma$ applied componentwise. We completely characterize those activation functions $\sigma$ for which the associated complex networks have the universal approximation property, meaning that they can uniformly approximate any continuous function on any compact subset of $\mathbb{C}^d$ arbitrarily well. Unlike the classical case of real networks, the set of "good activation functions" which give rise to networks with the universal approximation property differs significantly depending on whether one considers deep networks or shallow networks: For deep networks with at least two hidden layers, the universal approximation property holds as long as $\sigma$ is neither a polynomial, a holomorphic function, or an antiholomorphic function. Shallow networks, on the other hand, are universal if and only if the real part or the imaginary part of $\sigma$ is not a polyharmonic function.
translated by 谷歌翻译
我们研究并介绍了复杂和双色复合物环境中的新梯度运算符,这是受自适应线性神经元(Adaline)在1960年发明的著名的最少均等(LMS)算法的启发。这些梯度运算符将用于制定最小二平方(BLM)算法的新学习规则。这种方法既扩展了经典的真实和复杂的LMS算法。
translated by 谷歌翻译
我们研究了使用前馈神经网络实施其支持集的同时近似紧凑型积分功能的问题。我们的第一个主要结果将这个“结构化”近似问题转录为普遍性问题。我们通过在空间上构建通常的拓扑结构来做到这一点,$ l^1 _ {\ propatatorName {loc}}(\ m athbb {r}^d,\ m athbb {r}^d)locally-intellable-intellable-intellable-intellable-intellable-in紧凑型函数只能通过具有匹配的离散支持的函数来近似于$ l^1 $ norm。我们建立了Relu Feedforwward网络的普遍性,并在此精致拓扑结构中具有双线性池层。因此,我们发现具有双线性池的Relu FeedForward网络可以在实施其离散支持的同时近似紧凑的功能。我们在紧凑型Lipschitz函数的致密亚类中得出了通用近似定理的定量均匀版本。该定量结果表达了通过目标函数的规律性,其基本支持的度量和直径以及输入和输出空间的尺寸来构建此relu网络所需的双线性池层层的深度,宽度和数量。相反,我们表明多项式回归器和分析前馈网络在该空间中并非通用。
translated by 谷歌翻译
本文开发了简单的前馈神经网络,实现了所有连续功能的通用近似性,具有固定的有限数量的神经元。这些神经网络很简单,因为它们的设计具有简单且可增加的连续激活功能$ \ Sigma $利用三角波函数和软片功能。我们证明了$ \ Sigma $ -Activated网络,宽度为36d $ 36d(2d + 1)$和11 $ 11 $可以在任意小错误中估计$ d $ -dimensioanl超级函数上的任何连续功能。因此,对于监督学习及其相关的回归问题,这些网络产生的假设空间,尺寸不小于36d(2d + 1)\ times 11 $的持续功能的空间。此外,由图像和信号分类引起的分类函数在$ \ sigma $ -activated网络生成的假设空间中,宽度为36d(2d + 1)$和12 $ 12 $,当存在$ \的成对不相交的界限子集时mathbb {r} ^ d $,使得同一类的样本位于同一子集中。
translated by 谷歌翻译
灵活的变送器网络(FTNET)是最近提出的生物合理的神经网络,并在处理时间空间数据时与最先进的模型实现了竞争性能。但是,关于FTNET的理论理解仍然存在开放问题。从近似和局部最小值的角度来看,这项工作调查了一个隐藏层FTNET的理论属性。在温和的假设下,我们表明:i)Ftnet是一个普遍的近似器; ii)FTNET的近似复杂度可以是指数相比于具有前馈/复发架构的实值神经网络的复杂性,并且在最坏情况下具有相同的顺序; III)任何本地FTNET都是全局最小值,这表明本地搜索算法可以收敛到全局最小值。我们的理论结果表明,FTNET可以有效地表达目标功能,并且对局部最小值没有担忧,这补充了FTNET的理论空白,并表现出改善FTNET的可能性。
translated by 谷歌翻译
在这项工作中,我们通过整流电源单元激活功能导出浅神经网络的整体表示的公式。主要是,我们的第一件结果涉及REPU浅网络的非相似性表现能力。本文的多维结果表征了可以用有界规范和可能无界宽度表示的功能集。
translated by 谷歌翻译
直到最近,神经网络在机器学习中的应用几乎完全依赖于实际网络。然而,它最近观察到,该复合值的神经网络(CVNNS)在应用中表现出卓越的性能,其中输入自然复合值,例如MRI指纹识别。虽然现实价值网络的数学理论已经达到了一定程度的成熟度,但这远远不适用于复合网络。在本文中,我们通过提供近似美元的Compact Qualets上的Compact Value的神经网络上的Compact-valued神经网络,通过提供明确的定量误差界来分析复合网络的表达性。激活函数,由$ \ sigma(z)= \ mathrm {creu}(| z | - 1)\,\ mathrm {sgn}(z)$,它是实际使用的最受欢迎的复杂激活功能之一。我们表明,衍生的近似值率在Modroleu网络类中的最佳(最多为日志因子),其具有适度增长的重量。
translated by 谷歌翻译
我们介绍了一类完全连接的神经网络,其激活功能而不是点,而是仅取决于其规范来缩回特征向量。我们称此类网络径向神经网络,扩展了先前在旋转模棱两可的网络上的工作,该网络认为将激活重新激活较少。我们证明了径向神经网络的通用近似定理,包括在更困难的宽度和无界域的情况下。我们的证明技术是新颖的,与偶然的情况不同。此外,径向神经网络在可训练参数的矢量空间上表现出丰富的基础对称性。分解这些对称性会导致实用的无损模型压缩算法。通过梯度下降对压缩模型的优化等效于整个模型的投影梯度下降。
translated by 谷歌翻译
在这项工作中,我们探讨了H +“旧常规功能的深度整流二次单位神经网络的近似能力,相对于统一标准。我们发现理论近似大量取决于神经网络中的所选激活函数。
translated by 谷歌翻译