Media has a substantial impact on the public perception of events. A one-sided or polarizing perspective on any topic is usually described as media bias. One of the ways how bias in news articles can be introduced is by altering word choice. Biased word choices are not always obvious, nor do they exhibit high context-dependency. Hence, detecting bias is often difficult. We propose a Transformer-based deep learning architecture trained via Multi-Task Learning using six bias-related data sets to tackle the media bias detection problem. Our best-performing implementation achieves a macro $F_{1}$ of 0.776, a performance boost of 3\% compared to our baseline, outperforming existing methods. Our results indicate Multi-Task Learning as a promising alternative to improve existing baseline models in identifying slanted reporting.
translated by 谷歌翻译
媒体报道对公众对事件的看法具有重大影响。尽管如此,媒体媒体经常有偏见。偏见新闻文章的一种方法是改变选择一词。通过单词选择对偏见的自动识别是具有挑战性的,这主要是由于缺乏黄金标准数据集和高环境依赖性。本文介绍了Babe,这是由训练有素的专家创建的强大而多样化的数据集,用于媒体偏见研究。我们还分析了为什么专家标签在该域中至关重要。与现有工作相比,我们的数据集提供了更好的注释质量和更高的通知者协议。它由主题和插座之间平衡的3,700个句子组成,其中包含单词和句子级别上的媒体偏见标签。基于我们的数据,我们还引入了一种自动检测新闻文章中偏见的句子的方法。我们最佳性能基于BERT的模型是在由遥远标签组成的较大语料库中进行预训练的。对我们提出的监督数据集进行微调和评估模型,我们达到了0.804的宏F1得分,表现优于现有方法。
translated by 谷歌翻译
媒体覆盖率对公众对事件的看法具有实质性影响。尽管如此,媒体网点往往偏见。偏见新闻文章的一种方法是改变单词选择。单词选择自动识别偏差是具有挑战性的,主要是由于缺乏金标准数据集和高上下文依赖性。在本研究项目中,我旨在设计数据集和方法来识别媒体偏差。为实现这一目标,我计划使用自然语言处理和深度学习的研究方法,同时使用模型,并使用心理学和语言学的分析概念。第一个结果表明了跨学科研究方法的有效性。我的愿景是设计一个系统,帮助新闻读者了解偏见造成的媒体覆盖差异。到目前为止,我最好的基于BERT的模型是在较大的标签组成的较大核查上进行预先培训,表明远程监管有可能成为偏向偏差困难任务的解决方案。
translated by 谷歌翻译
对仇恨言论和冒犯性语言(HOF)的认可通常是作为一项分类任务,以决定文本是否包含HOF。我们研究HOF检测是否可以通过考虑HOF和类似概念之间的关系来获利:(a)HOF与情感分析有关,因为仇恨言论通常是负面陈述并表达了负面意见; (b)这与情绪分析有关,因为表达的仇恨指向作者经历(或假装体验)愤怒的同时经历(或旨在体验)恐惧。 (c)最后,HOF的一个构成要素是提及目标人或群体。在此基础上,我们假设HOF检测在与这些概念共同建模时,在多任务学习设置中进行了改进。我们将实验基于这些概念的现有数据集(情感,情感,HOF的目标),并在Hasoc Fire 2021英语子任务1A中评估我们的模型作为参与者(作为IMS-Sinai团队)。基于模型选择实验,我们考虑了多个可用的资源和共享任务的提交,我们发现人群情绪语料库,Semeval 2016年情感语料库和犯罪2019年目标检测数据的组合导致F1 =。 79在基于BERT的多任务多任务学习模型中,与Plain Bert的.7895相比。在HASOC 2019测试数据上,该结果更为巨大,而F1中的增加2pp和召回大幅增加。在两个数据集(2019,2021)中,HOF类的召回量尤其增加(2019年数据的6pp和2021数据的3pp),表明MTL具有情感,情感和目标识别是适合的方法可能部署在社交媒体平台中的预警系统。
translated by 谷歌翻译
This paper presents a cross-lingual sentiment analysis of news articles using zero-shot and few-shot learning. The study aims to classify the Croatian news articles with positive, negative, and neutral sentiments using the Slovene dataset. The system is based on a trilingual BERT-based model trained in three languages: English, Slovene, Croatian. The paper analyses different setups using datasets in two languages and proposes a simple multi-task model to perform sentiment classification. The evaluation is performed using the few-shot and zero-shot scenarios in single-task and multi-task experiments for Croatian and Slovene.
translated by 谷歌翻译
This paper details our participation in the Challenges and Applications of Automated Extraction of Socio-political Events from Text (CASE) workshop @ EMNLP 2022, where we take part in Subtask 1 of Shared Task 3. We approach the given task of event causality detection by proposing a self-training pipeline that follows a teacher-student classifier method. More specifically, we initially train a teacher model on the true, original task data, and use that teacher model to self-label data to be used in the training of a separate student model for the final task prediction. We test how restricting the number of positive or negative self-labeled examples in the self-training process affects classification performance. Our final results show that using self-training produces a comprehensive performance improvement across all models and self-labeled training sets tested within the task of event causality sequence classification. On top of that, we find that self-training performance did not diminish even when restricting either positive/negative examples used in training. Our code is be publicly available at https://github.com/Gzhang-umich/1CademyTeamOfCASE.
translated by 谷歌翻译
The widespread of offensive content online, such as hate speech and cyber-bullying, is a global phenomenon. This has sparked interest in the artificial intelligence (AI) and natural language processing (NLP) communities, motivating the development of various systems trained to detect potentially harmful content automatically. These systems require annotated datasets to train the machine learning (ML) models. However, with a few notable exceptions, most datasets on this topic have dealt with English and a few other high-resource languages. As a result, the research in offensive language identification has been limited to these languages. This paper addresses this gap by tackling offensive language identification in Sinhala, a low-resource Indo-Aryan language spoken by over 17 million people in Sri Lanka. We introduce the Sinhala Offensive Language Dataset (SOLD) and present multiple experiments on this dataset. SOLD is a manually annotated dataset containing 10,000 posts from Twitter annotated as offensive and not offensive at both sentence-level and token-level, improving the explainability of the ML models. SOLD is the first large publicly available offensive language dataset compiled for Sinhala. We also introduce SemiSOLD, a larger dataset containing more than 145,000 Sinhala tweets, annotated following a semi-supervised approach.
translated by 谷歌翻译
自动识别仇恨和虐待内容对于打击有害在线内容及其破坏性影响的传播至关重要。大多数现有作品通过检查仇恨语音数据集中的火车测试拆分上的概括错误来评估模型。这些数据集通常在其定义和标记标准上有所不同,从而在预测新的域和数据集时会导致模型性能差。在这项工作中,我们提出了一种新的多任务学习(MTL)管道,该管道利用MTL在多个仇恨语音数据集中同时训练,以构建一个更包含的分类模型。我们通过采用保留的方案来模拟对新的未见数据集的评估,在该方案中,我们从培训中省略了目标数据集并在其他数据集中共同培训。我们的结果始终优于现有工作的大量样本。当在预测以前看不见的数据集时,在检查火车测试拆分中的概括误差和实质性改进时,我们会表现出强烈的结果。此外,我们组装了一个新颖的数据集,称为Pubfigs,重点是美国公共政治人物的问题。我们在PubFigs的305,235美元推文中自动发现有问题的语音,并发现了对公众人物的发布行为的见解。
translated by 谷歌翻译
法律文件是非结构化的,使用法律术语,并且具有相当长的长度,使得难以通过传统文本处理技术自动处理。如果文档可以在语义上分割成连贯的信息单位,法律文件处理系统将基本上受益。本文提出了一种修辞职位(RR)系统,用于将法律文件分组成语义连贯的单位:事实,论点,法规,问题,先例,裁决和比例。在法律专家的帮助下,我们提出了一套13个细粒度的修辞标志标签,并创建了与拟议的RR批发的新的法律文件有条件。我们开发一个系统,以将文件分段为修辞职位单位。特别是,我们开发了一种基于多任务学习的深度学习模型,文档修辞角色标签作为分割法律文件的辅助任务。我们在广泛地尝试各种深度学习模型,用于预测文档中的修辞角色,并且所提出的模型对现有模型显示出卓越的性能。此外,我们应用RR以预测法律案件的判断,并表明与基于变压器的模型相比,使用RR增强了预测。
translated by 谷歌翻译
姿态检测的目标是确定以目标朝向目标的文本中表达的视点。这些观点或上下文通常以许多不同的语言表达,这取决于用户和平台,这可以是本地新闻插座,社交媒体平台,新闻论坛等。然而,姿态检测的大多数研究已经限于使用单一语言和几个有限的目标,在交叉舌姿态检测很少有效。此外,标记数据的非英语来源通常稀缺,并具有额外的挑战。最近,大型多语言语言模型在许多非英语任务上大大提高了性能,尤其是具有有限数量的示例。这突出了模型预培训的重要性及其从少数例子中学习的能力。在本文中,我们展示了对日期交叉姿态检测的最全面的研究:我们在6名语言系列中使用12种语言的12种不同的数据集进行实验,每个都有6个低资源评估设置。对于我们的实验,我们构建了模式开发培训,提出了添加一种新颖的标签编码器来简化言语程序。我们进一步提出了基于情绪的姿态数据进行预培训,这在与几个强的基线相比,在低拍摄环境中显示了大量的6%F1绝对的增长。
translated by 谷歌翻译
我们研究了检查问题的事实,旨在识别给定索赔的真实性。具体而言,我们专注于事实提取和验证(发烧)及其伴随数据集的任务。该任务包括从维基百科检索相关文件(和句子)并验证文件中的信息是否支持或驳斥所索赔的索赔。此任务至关重要,可以是假新闻检测和医疗索赔验证等应用程序块。在本文中,我们以通过以结构化和全面的方式呈现文献来更好地了解任务的挑战。我们通过分析不同方法的技术视角并讨论发热数据集的性能结果,描述了所提出的方法,这是最熟悉的和正式结构化的数据集,就是事实提取和验证任务。我们还迄今为止迄今为止确定句子检索组件的有益损失函数的最大实验研究。我们的分析表明,采样负句对于提高性能并降低计算复杂性很重要。最后,我们描述了开放的问题和未来的挑战,我们激励了未来的任务研究。
translated by 谷歌翻译
Facebook和Twitter等社交媒体平台上的在线形象已成为互联网用户的日常习惯。尽管平台为用户提供了大量服务,但用户仍遭受网络欺凌的困扰,这进一步导致了精神虐待,并可能升级以对个人或目标群体造成身体伤害。在本文中,我们使用相关的阿拉伯语Twitter数据集将其提交给阿拉伯仇恨言论2022共享任务研讨会(OSACT5 2022)。共享任务由3个子任务组成,子任务A的重点是检测该推文是否令人反感。然后,对于进攻性推文,子任务B专注于检测该推文是否是仇恨言论。最后,对于仇恨言论推文,子任务C的重点是检测六个不同类别中的细粒度仇恨言论。变压器模型证明了它们在分类任务方面的效率,但是在小型或不平衡数据集中进行微调时的合适问题。我们通过研究多个培训范式(例如对比学习和多任务学习以及分类微调)以及我们前5名表演者的合奏来克服这一限制。我们提出的解决方案分别在子任务A,B和C中分别实现了0.841、0.817和0.476宏F1平均。
translated by 谷歌翻译
Understanding customer feedback is becoming a necessity for companies to identify problems and improve their products and services. Text classification and sentiment analysis can play a major role in analyzing this data by using a variety of machine and deep learning approaches. In this work, different transformer-based models are utilized to explore how efficient these models are when working with a German customer feedback dataset. In addition, these pre-trained models are further analyzed to determine if adapting them to a specific domain using unlabeled data can yield better results than off-the-shelf pre-trained models. To evaluate the models, two downstream tasks from the GermEval 2017 are considered. The experimental results show that transformer-based models can reach significant improvements compared to a fastText baseline and outperform the published scores and previous models. For the subtask Relevance Classification, the best models achieve a micro-averaged $F1$-Score of 96.1 % on the first test set and 95.9 % on the second one, and a score of 85.1 % and 85.3 % for the subtask Polarity Classification.
translated by 谷歌翻译
句子嵌入通常用于文本聚类和语义检索任务中。最先进的句子表示方法基于大量手动标记句子对集合的人工神经网络。高资源语言(例如英语或中文)可以使用足够数量的注释数据。在不太受欢迎的语言中,必须使用多语言模型,从而提供较低的性能。在本出版物中,我们通过提出一种培训有效的语言特定句子编码的方法来解决此问题,而无需手动标记数据。我们的方法是从句子对准双语文本语料库中自动构建释义对数据集。然后,我们使用收集的数据来微调具有附加复发池层的变压器语言模型。我们的句子编码器可以在不到一天的时间内在一张图形卡上进行培训,从而在各种句子级的任务上实现高性能。我们在波兰语中评估了八个语言任务的方法,并将其与最佳可用多语言句子编码器进行比较。
translated by 谷歌翻译
近年来,我们看到了处理敏感个人信息的应用程序(包括对话系统)的指数增长。这已经揭示了在虚拟环境中有关个人数据保护的极为重要的问题。首先,性能模型应该能够区分敏感内容与中性句子的句子。其次,它应该能够识别其中包含的个人数据类别的类型。这样,可以考虑每个类别的不同隐私处理。在文献中,如果有关于自动敏感数据识别的作品,则通常在没有共同基准的不同域或语言上进行。为了填补这一空白,在这项工作中,我们介绍了SPEDAC,这是一个新的注释基准,用于识别敏感的个人数据类别。此外,我们提供了对数据集的广泛评估,该数据集使用不同的基准和基于Roberta的分类器进行的,这是一种神经体系结构,在检测敏感句子和个人数据类别的分类方面实现了强大的性能。
translated by 谷歌翻译
In recent years, there has been increased interest in building predictive models that harness natural language processing and machine learning techniques to detect emotions from various text sources, including social media posts, micro-blogs or news articles. Yet, deployment of such models in real-world sentiment and emotion applications faces challenges, in particular poor out-of-domain generalizability. This is likely due to domain-specific differences (e.g., topics, communicative goals, and annotation schemes) that make transfer between different models of emotion recognition difficult. In this work we propose approaches for text-based emotion detection that leverage transformer models (BERT and RoBERTa) in combination with Bidirectional Long Short-Term Memory (BiLSTM) networks trained on a comprehensive set of psycholinguistic features. First, we evaluate the performance of our models within-domain on two benchmark datasets: GoEmotion and ISEAR. Second, we conduct transfer learning experiments on six datasets from the Unified Emotion Dataset to evaluate their out-of-domain robustness. We find that the proposed hybrid models improve the ability to generalize to out-of-distribution data compared to a standard transformer-based approach. Moreover, we observe that these models perform competitively on in-domain data.
translated by 谷歌翻译
在本文中,我们将科学文章分类为自然语言处理(NLP)和机器学习(ML)的科学文章(i)是否通过引入击败现有模型或的新型技术来扩展当前的最新技术是否(ii)他们是否主要批评现有的最新技术,即,它相对于某些属性(例如,错误的评估,错误的数据集,误导性的任务规范)不足。我们将(i)下的贡献称为具有\ enquote {正姿势}和(ii)下的贡献为具有\ enquote {负姿势}(对相关工作)。我们注释来自NLP和ML的1.5k纸以超过1.5k的论文来培训基于SCIBERT的模型,以自动根据其标题和抽象来预测论文的立场。然后,我们分析了NLP和ML的最后35年$ 35年以上的41k纸上的大规模趋势,发现随着时间的流逝,论文变得更加积极,但是负面论文也变得更加负面,我们观察到更多的负面论文,我们观察到了更多的负面论文。最近几年。在收到的引用方面,负面论文也更具影响力。
translated by 谷歌翻译
For natural language understanding (NLU) technology to be maximally useful, it must be able to process language in a way that is not exclusive to a single task, genre, or dataset. In pursuit of this objective, we introduce the General Language Understanding Evaluation (GLUE) benchmark, a collection of tools for evaluating the performance of models across a diverse set of existing NLU tasks. By including tasks with limited training data, GLUE is designed to favor and encourage models that share general linguistic knowledge across tasks. GLUE also includes a hand-crafted diagnostic test suite that enables detailed linguistic analysis of models. We evaluate baselines based on current methods for transfer and representation learning and find that multi-task training on all tasks performs better than training a separate model per task. However, the low absolute performance of our best model indicates the need for improved general NLU systems.
translated by 谷歌翻译
仇恨言论的大规模传播,针对特定群体的仇恨内容,是一个批评社会重要性的问题。仇恨语音检测的自动化方法通常采用最先进的深度学习(DL)的文本分类器 - 非常大的预训练的神经语言模型超过1亿个参数,将这些模型适应仇恨语音检测的任务相关标记的数据集。不幸的是,只有许多标记的数据集有限的尺寸可用于此目的。我们为推进这种事态的高潜力进行了几项贡献。我们呈现HyperNetworks用于仇恨语音检测,这是一种特殊的DL网络,其权重由小型辅助网络调节。这些架构在字符级运行,而不是字级,并且与流行的DL分类器相比,几个较小的顺序大小。我们进一步表明,在命名为IT数据增强的过程中使用大量自动生成的示例的培训讨厌检测分类器通常是有益的,但这种做法尤其提高了所提出的HyperNetworks的性能。事实上,我们实现了比艺术最新的语言模型相当或更好的性能,这些模型是使用这种方法的预先训练的和数量级,与使用五个公共仇恨语音数据集进行评估。
translated by 谷歌翻译
这项研究提供了对僧伽罗文本分类的预训练语言模型的性能的首次全面分析。我们测试了一组不同的Sinhala文本分类任务,我们的分析表明,在包括Sinhala(XLM-R,Labse和Laser)的预训练的多语言模型中,XLM-R是迄今为止Sinhala文本的最佳模型分类。我们还预先培训了两种基于罗伯塔的单语僧伽罗模型,它们远远优于僧伽罗的现有预训练的语言模型。我们表明,在微调时,这些预训练的语言模型为僧伽罗文本分类树立了非常强大的基线,并且在标记数据不足以进行微调的情况下非常强大。我们进一步提供了一组建议,用于使用预训练的模型进行Sinhala文本分类。我们还介绍了新的注释数据集,可用于僧伽罗文本分类的未来研究,并公开发布我们的预培训模型。
translated by 谷歌翻译