Vision-language foundation models pretrained on large-scale data provide a powerful tool for many visual understanding tasks. Notably, many vision-language models build two encoders (visual and textual) that can map two modalities into the same embedding space. As a result, the learned representations achieve good zero-shot performance on tasks like image classification. However, when there are only a few examples per category, the potential of large vision-language models is often underperformed, mainly due to the gap between a large number of parameters and a relatively small amount of training data. This paper shows that we can significantly improve the performance of few-shot classification by using the category names to initialize the classification head. More interestingly, we can borrow the non-perfect category names, or even names from a foreign language, to improve the few-shot classification performance compared with random initialization. With the proposed category name initialization method, our model obtains the state-of-the-art performance on a number of few-shot image classification benchmarks (e.g., 87.37\% on ImageNet and 96.08\% on Stanford Cars, both using five-shot learning). We also investigate and analyze when the benefit of category names diminishes and how to use distillation to improve the performance of smaller models, providing guidance for future research.
translated by 谷歌翻译
探索大规模预处理的基础模型对计算机视觉具有重大兴趣,因为这些模型可以快速转移到许多下游任务中。本文介绍了对比字幕(COCA),这是一种极简主义的设计,旨在为图像文本编码器编码器基础模型预算与对比度损失和字幕损失,从而从剪辑和诸如simvlm之类的生成方法之类的对比方法中包含模型能力。与所有解码器层都参与编码器输出的标准编码器 - 模块变压器相反,可口可乐省略了解码器层的上半部分的交叉注意,以编码单峰文本表示,并串联到剩余的解码器层,这些解码器与图像编码器相交的解码器层多模式图像文本表示。除了对多模态解码器输出的字幕损失外,我们还应用了单峰图像和文本嵌入之间的对比损失,该输出可以预测文本令牌自动加压。通过共享相同的计算图,可以用最小的开销有效地计算两个培训目标。可口可乐是端到端和从头开始的网络尺度alt-text数据和带注释的图像,通过将所有标签视为文本,无缝地统一自然语言监督以进行表示。从经验上讲,可口可乐通过零拍传输或在广泛的下游任务上进行零摄像转移或最少的特定任务适应,跨越视觉识别(Imagenet,Kinetics-400/600/700,瞬间, ),交叉模式检索(MSCOCO,FLICKR30K,MSR-VTT),多模式理解(VQA,SNLI-VE,NLVR2)和图像字幕(MSCOCO,NOCAPS)。值得注意的是,在Imagenet分类方面,COCA获得了86.3%的TOP-1准确性,带有冷冻编码器和学习的分类头90.6%,以及带有填充编码器的Imagenet上的新最先进的91.0%Top-1 Top-1精度。
translated by 谷歌翻译
本文提出了一种对比调整,这是一种简单的方法,采用对比训练来对准图像和文本模型,同时仍然利用他们的预训练。在我们的实证研究中,我们发现,锁定的预训练图像模型与解锁文本模型最佳。我们调用这种对比调整“锁定图像文本调整”(LIT TOONING)的实例,该实例仅教导文本模型,从预先训练的图像模型中读出了良好的表示新任务。亮度调谐模型将零拍摄传输到新视觉任务的能力提高,例如图像分类或检索。建议的亮度调整是广泛适用的;它可以使用三种不同的图像文本数据集可靠地使用多种预训练方法(监督和无监督)和多种架构(Reset,Vision变换器和MLP-MILLER)。利用基于变压器的预训练VIT-G / 14型号,LIT调谐模型在想象网测试集中实现了84.5%的零射频传输精度,并且在充满挑战的分发ObjectNet测试集中实现了81.1%。
translated by 谷歌翻译
Prompt Tuning, conditioning on task-specific learned prompt vectors, has emerged as a data-efficient and parameter-efficient method for adapting large pretrained vision-language models to multiple downstream tasks. However, existing approaches usually consider learning prompt vectors for each task independently from scratch, thereby failing to exploit the rich shareable knowledge across different vision-language tasks. In this paper, we propose multitask vision-language prompt tuning (MVLPT), which incorporates cross-task knowledge into prompt tuning for vision-language models. Specifically, (i) we demonstrate the effectiveness of learning a single transferable prompt from multiple source tasks to initialize the prompt for each target task; (ii) we show many target tasks can benefit each other from sharing prompt vectors and thus can be jointly learned via multitask prompt tuning. We benchmark the proposed MVLPT using three representative prompt tuning methods, namely text prompt tuning, visual prompt tuning, and the unified vision-language prompt tuning. Results in 20 vision tasks demonstrate that the proposed approach outperforms all single-task baseline prompt tuning methods, setting the new state-of-the-art on the few-shot ELEVATER benchmarks and cross-task generalization benchmarks. To understand where the cross-task knowledge is most effective, we also conduct a large-scale study on task transferability with 20 vision tasks in 400 combinations for each prompt tuning method. It shows that the most performant MVLPT for each prompt tuning method prefers different task combinations and many tasks can benefit each other, depending on their visual similarity and label similarity. Code is available at https://github.com/sIncerass/MVLPT.
translated by 谷歌翻译
视觉世界自然地展现了一个长尾的开放类分布,这对现代视觉系统带来了巨大挑战。现有方法可以执行类重新平衡策略或直接改进网络模块以解决问题。然而,他们仍然用有限一套预定义标签训练模型,限制了他们的监督信息并限制了他们对新颖实例的可转移性。新途径上的大型对比视觉普瑞宁普雷宁闪光灯的最新进展,可视识别。利用开放词汇监督,预先染色的对比视觉语言模型学习强大的多模式表示,这是对处理数据缺陷和看不见的概念。通过计算视觉和文本输入之间的语义相似性,可视识别被转换为vision语言匹配问题。灵感来自于此,我们提出了民谣,利用了对比尾识别的对比视觉模型。我们首先通过对特定的长尾目标数据集进行对比学习继续预先预留视觉语言骨干。之后,我们冻结了骨干,进一步采用了额外的适配器层,以增强通过重新采样策略构建的平衡训练样本上的尾级课程的表示。已经在三个流行的长尾识别基准测试中进行了广泛的实验。因此,我们简单有效的方法设定了新的最先进的表演,优于具有大边距的竞争基础。代码在https://github.com/gaopengcuhk/ballad发布。
translated by 谷歌翻译
Pretrained large-scale vision-language models like CLIP have exhibited strong generalization over unseen tasks. Yet imperceptible adversarial perturbations can significantly reduce CLIP's performance on new tasks. In this work, we identify and explore the problem of \emph{adapting large-scale models for zero-shot adversarial robustness}. We first identify two key factors during model adaption -- training losses and adaptation methods -- that affect the model's zero-shot adversarial robustness. We then propose a text-guided contrastive adversarial training loss, which aligns the text embeddings and the adversarial visual features with contrastive learning on a small set of training data. We apply this training loss to two adaption methods, model finetuning and visual prompt tuning. We find that visual prompt tuning is more effective in the absence of texts, while finetuning wins in the existence of text guidance. Overall, our approach significantly improves the zero-shot adversarial robustness over CLIP, seeing an average improvement of over 31 points over ImageNet and 15 zero-shot datasets. We hope this work can shed light on understanding the zero-shot adversarial robustness of large-scale models.
translated by 谷歌翻译
Pre-trained representations are becoming crucial for many NLP and perception tasks. While representation learning in NLP has transitioned to training on raw text without human annotations, visual and vision-language representations still rely heavily on curated training datasets that are expensive or require expert knowledge. For vision applications, representations are mostly learned using datasets with explicit class labels such as Ima-geNet or OpenImages. For vision-language, popular datasets like Conceptual Captions, MSCOCO, or CLIP all involve a non-trivial data collection (and cleaning) process. This costly curation process limits the size of datasets and hence hinders the scaling of trained models. In this paper, we leverage a noisy dataset of over one billion image alt-text pairs, obtained without expensive filtering or post-processing steps in the Conceptual Captions dataset. A simple dual-encoder architecture learns to align visual and language representations of the image and text pairs using a contrastive loss. We show that the scale of our corpus can make up for its noise and leads to state-of-the-art representations even with such a simple learning scheme. Our visual representation achieves strong performance when transferred to classification tasks such as ImageNet and VTAB. The aligned visual and language representations enables zero-shot image classification and also set new state-of-the-art results on Flickr30K and MSCOCO image-text retrieval benchmarks, even when compared with more sophisticated crossattention models. The representations also enable cross-modality search with complex text and text + image queries.
translated by 谷歌翻译
This work explores an efficient approach to establish a foundational video-text model for tasks including open-vocabulary video classification, text-to-video retrieval, video captioning and video question-answering. We present VideoCoCa that reuses a pretrained image-text contrastive captioner (CoCa) model and adapt it to video-text tasks with minimal extra training. While previous works adapt image-text models with various cross-frame fusion modules (for example, cross-frame attention layer or perceiver resampler) and finetune the modified architecture on video-text data, we surprisingly find that the generative attentional pooling and contrastive attentional pooling layers in the image-text CoCa design are instantly adaptable to ``flattened frame embeddings'', yielding a strong zero-shot transfer baseline for many video-text tasks. Specifically, the frozen image encoder of a pretrained image-text CoCa takes each video frame as inputs and generates \(N\) token embeddings per frame for totally \(T\) video frames. We flatten \(N \times T\) token embeddings as a long sequence of frozen video representation and apply CoCa's generative attentional pooling and contrastive attentional pooling on top. All model weights including pooling layers are directly loaded from an image-text CoCa pretrained model. Without any video or video-text data, VideoCoCa's zero-shot transfer baseline already achieves state-of-the-art results on zero-shot video classification on Kinetics 400/600/700, UCF101, HMDB51, and Charades, as well as zero-shot text-to-video retrieval on MSR-VTT and ActivityNet Captions. We also explore lightweight finetuning on top of VideoCoCa, and achieve strong results on video question-answering (iVQA, MSRVTT-QA, MSVD-QA) and video captioning (MSR-VTT, ActivityNet, Youcook2). Our approach establishes a simple and effective video-text baseline for future research.
translated by 谷歌翻译
从任务不足的预训练的深层模型中转移知识以进行下游任务是计算机视觉研究中的一个重要主题。随着计算能力的增长,我们现在拥有大规模的模型体系结构和数据量的开源视觉语言预培训模型。在这项研究中,我们专注于转移视力分类任务的知识。传统方法随机初始化线性分类器头进行视觉分类,但是它们将文本编码器的用法留为未发现的下游视觉识别任务。在本文中,我们修改了线性分类器的角色,并用对象类别的嵌入式语言表示替换分类器。这些语言表示是从视觉语言预训练模型的文本编码器初始化的,以进一步利用其良好的语言模型参数。实证研究表明,我们的方法提高了视频分类的性能和训练速度,模型的变化微不足道。特别是,我们的范式在动力学400上实现了87.3%的最新准确性。
translated by 谷歌翻译
有效的缩放和灵活的任务接口使大型语言模型能够在许多任务中表现出色。帕利(Pali)根据视觉和文本输入生成文本,并使用该界面以许多语言执行许多视觉,语言和多模式任务。为了训练帕利,我们利用了大型的编码器语言模型和视觉变压器(VITS)。这使我们能够利用其现有能力,并利用培训它们的大量成本。我们发现,视觉和语言组成部分的联合缩放很重要。由于现有的语言变压器比其视觉对应物要大得多,因此我们训练迄今为止最大的VIT(VIT-E),以量化甚至大容量视觉模型的好处。为了训练Pali,我们基于一个新的图像文本训练集,其中包含10B图像和文本,以100多种语言来创建大型的多语言组合。帕利(Pali)在多个视觉和语言任务(例如字幕,视觉问题,索方式,场景文本理解)中实现了最新的,同时保留了简单,模块化和可扩展的设计。
translated by 谷歌翻译
诸如剪辑之类的大型预训练的视觉模型在学习表现方面表现出巨大的潜力,这些模型可以在各种下游任务中转移。与主要基于离散标签的传统表示学习不同,视觉语言预训练会使图像和文本在公共特征空间中对齐,这允许通过提示零弹性转移到下游任务,即从分类权重合成。描述兴趣类的自然语言。在这项工作中,我们表明,在实践中部署此类模型的一个重大挑战是及时的工程,它需要域专业知识,并且非常耗时 - 由于措辞的略有变化,需要花费大量时间来进行单词调整可能会对性能产生巨大影响。受到自然语言处理(NLP)迅速学习研究的最新进展的启发,我们提出了上下文优化(COP),这是一种专门用于调整类似剪辑的视觉语言模型的简单方法,用于下游图像识别。具体而言,Coop用可学习的向量建模了提示A的上下文单词,而整个预训练的参数则保持固定。为了处理不同的图像识别任务,我们提供了两个COOP的实现:统一上下文和特定于班级的上下文。通过在11个数据集上进行的大量实验,我们证明Coop只需要一两个镜头才能以相当的利润击败手工制作的提示,并且能够以16张镜头(例如16张照片)获得迅速工程的显着改进增益约为15%(最高达到45%以上)。尽管是一种基于学习的方法,但与使用手工制作的提示相比,Coop与零拍模型相比,取得了出色的域泛化性能。
translated by 谷歌翻译
Finetuning image-text models such as CLIP achieves state-of-the-art accuracies on a variety of benchmarks. However, recent works like WiseFT (Wortsman et al., 2021) and LP-FT (Kumar et al., 2022) have shown that even subtle differences in the finetuning process can lead to surprisingly large differences in the final performance, both for in-distribution (ID) and out-of-distribution (OOD) data. In this work, we show that a natural and simple approach of mimicking contrastive pretraining consistently outperforms alternative finetuning approaches. Specifically, we cast downstream class labels as text prompts and continue optimizing the contrastive loss between image embeddings and class-descriptive prompt embeddings (contrastive finetuning). Our method consistently outperforms baselines across 7 distribution shifts, 6 transfer learning, and 3 few-shot learning benchmarks. On WILDS-iWILDCam, our proposed approach FLYP outperforms the top of the leaderboard by $2.3\%$ ID and $2.7\%$ OOD, giving the highest reported accuracy. Averaged across 7 OOD datasets (2 WILDS and 5 ImageNet associated shifts), FLYP gives gains of $4.2\%$ OOD over standard finetuning and outperforms the current state of the art (LP-FT) by more than $1\%$ both ID and OOD. Similarly, on 3 few-shot learning benchmarks, our approach gives gains up to $4.6\%$ over standard finetuning and $4.4\%$ over the state of the art. In total, these benchmarks establish contrastive finetuning as a simple, intuitive, and state-of-the-art approach for supervised finetuning of image-text models like CLIP. Code is available at https://github.com/locuslab/FLYP.
translated by 谷歌翻译
从自然语言监督中学习视觉表示,最近在许多开创性的作品中表现出了巨大的希望。通常,这些具有语言的视觉模型表现出对各种数据集和任务的强大可传递性。但是,由于缺乏易于使用的评估工具包和公共基准,评估这些模型的可转让性仍然很具有挑战性。为了解决这个问题,我们构建了高级版(评估语言的视觉任务级传输),这是用于评估(预训练)语言增强视觉模型的第一个基准和工具包。升华由三个组成部分组成。 (i)数据集。作为下游评估套件,它由20个图像分类数据集和35个对象检测数据集组成,每个数据集都用外部知识来增强。 (ii)工具包。开发了自动高参数调谐工具包,以促进下游任务的模型评估。 (iii)指标。多种评估指标用于测量样品效率(零射击和少量)和参数效率(线性探测和完整模型微调)。我们在https://computer-vision-in-the-wild.github.io/elevater/上公开发布leverater
translated by 谷歌翻译
使用图像文本对的对比语言图像预测(剪辑)在零拍摄和传输学习设置中的图像分类中取得了令人印象深刻的结果。但是,我们表明,直接应用此类模型以识别对象检测的图像区域导致由于域移位导致的性能差:剪辑训练以与文本描述的整体匹配,而不捕获图像之间的细粒度对齐地区和文本跨度。为了缓解此问题,我们提出了一种称为RegionClip的新方法,可显着扩展剪辑以学习区域级视觉表示,从而在图像区域和文本概念之间实现细粒度对齐。我们的方法利用剪辑模型将图像区域与模板标题匹配,然后预先列出我们的模型以对准要素空间中的这些区域文本对。将预磨料模型转移到开放词汇对象检测任务时,我们的方法显着优于3.8 AP50和2.2 AP的最新技术,分别用于COCO和LVIS数据集的新型类别。更多,学习区域表示支持对象检测的零拍摄推断,显示了对COCO和LVIS数据集的有希望的结果。我们的代码可在https://github.com/microsoft/regionclip上获得。
translated by 谷歌翻译
我们提出了一种称为基本的组合缩放方法,可在ImageNet ILSVRC-2012验证集上实现85.7%的前1个零点精度,超越了最佳发布的零拍模型 - 剪辑并对齐 - 达9.3%。我们的基本模式还显示出鲁棒性基准的显着改进。例如,在5个测试集中,具有自然分布换档,如想象的 - {A,R,V2,素描}和ObjectNet,我们的车型实现了83.7%的前1个平均精度,只有一个小幅度从其原始的想象精度下降。为实现这些结果,我们扩大了剪辑的对比学习框架,并在三个方面对齐:数据大小,型号大小和批量大小。我们的数据集具有6.6B噪声图像文本对,比对齐的4倍,比夹子大16倍。我们最大的型号具有3B重量,参数比为3.75倍,拖鞋比对齐和夹子更大。我们的批量尺寸为65536,比剪辑的2倍,4倍超过对齐。缩放的主要挑战是我们的加速器的内存有限,如GPU和TPU。因此,我们提出了一种在线渐变缓存的简单方法来克服这个限制。
translated by 谷歌翻译
在低标签制度中,解决图像的多标签识别(MLR)是许多现实世界应用的一项艰巨任务。最近的工作学会了文本和视觉空间之间的一致性,以补偿图像标签不足,但由于可用的MLR注释量有限,因此失去了准确性。在这项工作中,我们利用数百万辅助图像文本对预测的文本和视觉特征的牢固对齐,并提出双背景优化(dualCoop)作为部分标签MLR和零发射MLR的统一框架。 DualCoop用类名来编码正面和负面的上下文,作为语言输入的一部分(即提示)。由于DualCoop仅在验证的视觉语言框架上引入了非常轻松的开销,因此它可以迅速适应具有有限的注释甚至看不见的类别的多标签识别任务。对两个挑战性低标签设置的标准多标签识别基准测试的实验证明了我们方法比最新方法的优势。
translated by 谷歌翻译
本文提出了一个简单而有效的框架蒙版,该框架将新提出的掩盖自distillation纳入对比的语言图像预处理中。掩盖自distillation的核心思想是将表示从完整的图像提取到蒙版图像预测的表示形式。这种合并享有两个重要的好处。首先,掩盖的自我验证目标是本地贴片表示学习,这与视觉对比度的互补,专注于与文本相关的表示。二,掩盖的自我验证也与视觉语言对比符合训练目标的视野对比是一致的。视觉编码器用于功能对齐,因此能够学习本地语义从该语言中获得间接监督。我们提供了专门设计的实验,并进行了全面的分析,以验证这两个好处。从经验上讲,我们表明,当MaskClip应用于各种具有挑战性的下游任务时,可以在线性探测,填充和零拍摄中取得卓越的结果,并在语言编码器的指导下取得了卓越的结果。
translated by 谷歌翻译
State-of-the-art computer vision systems are trained to predict a fixed set of predetermined object categories. This restricted form of supervision limits their generality and usability since additional labeled data is needed to specify any other visual concept. Learning directly from raw text about images is a promising alternative which leverages a much broader source of supervision. We demonstrate that the simple pre-training task of predicting which caption goes with which image is an efficient and scalable way to learn SOTA image representations from scratch on a dataset of 400 million (image, text) pairs collected from the internet. After pre-training, natural language is used to reference learned visual concepts (or describe new ones) enabling zero-shot transfer of the model to downstream tasks. We study the performance of this approach by benchmarking on over 30 different existing computer vision datasets, spanning tasks such as OCR, action recognition in videos, geo-localization, and many types of fine-grained object classification. The model transfers non-trivially to most tasks and is often competitive with a fully supervised baseline without the need for any dataset specific training. For instance, we match the accuracy of the original ResNet-50 on ImageNet zero-shot without needing to use any of the 1.28 million training examples it was trained on. We release our code and pre-trained model weights at https://github.com/OpenAI/CLIP.
translated by 谷歌翻译
对比视力语言预训练(称为剪辑)为使用大型图像文本对学习视觉表示提供了新的范式。通过零拍知识转移,它在下游任务上表现出令人印象深刻的表现。为了进一步增强剪辑的适应能力,现有的方法提议微调额外的可学习模块,这大大改善了少量的性能,但引入了额外的培训时间和计算资源。在本文中,我们提出了一种无训练的适应方法,用于进行剪辑进行几个弹药分类,称为Tip-Adapter,该分类不仅继承了零拍剪辑的无训练优势,而且还与训练需要的那些相当的表现相当方法。 TIP-ADAPTER通过少数照片训练集通过键值缓存模型构造适配器,并更新通过功能检索中剪辑中编码的先验知识。最重要的是,可以通过对10 $ \ times $ \现有方法少的速度$ \ times $ $ \现有方法进行微调,这可以进一步提高Imagenet上的最先进。高效的。我们在11个数据集上进行了很少的射击分类实验,以证明我们提出的方法的优势。代码在https://github.com/gaopengcuhk/tip-adapter上发布。
translated by 谷歌翻译
本文介绍了Omnivl,这是一种新的基础模型,旨在使用一种通用体系结构来支持图像语言和视频语言任务。它为图像和视频输入采用了统一的基于变压器的视觉编码器,因此可以执行联合图像语言和视频语言预处理。我们首次证明了这样的范式受益于图像和视频任务,而不是传统的单向传输(例如,使用图像语言来帮助视频语言)。为此,我们提出了对图像语言和视频语言的脱钩关节预处理,以有效地将视觉模型分解为空间和时间维度,并在图像和视频任务上获得性能提升。此外,我们引入了一种新颖的统一视觉对比度(UNIVLC)损失,以利用图像文本,视频文本,图像标签(例如,图像分类),视频标签(例如,视频动作识别)在一起受到监督和吵闹的监督预处理数据都尽可能多地利用。无需额外的任务适配器,Omnivl可以同时支持仅视觉任务(例如,图像分类,视频操作识别),跨模式对齐任务(例如,图像/视频 - 文本检索)和多模式理解和生成任务(例如,图像/视频问答,字幕)。我们在各种下游任务上评估Omnivl,并以相似的模型大小和数据量表获得最新的或竞争结果。
translated by 谷歌翻译